On the factorization of integral operators on spaces of summable functions
Izvestiya. Mathematics , Tome 73 (2009) no. 5, pp. 921-937.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the factorization $I-K=(I-U^+)(I-U^-)$, where $I$ is the identity operator, $K$ is an integral operator acting on some Banach space of functions summable with respect to a measure $\mu$ on $(a,b)\subset(-\infty,+\infty)$ continuous relative to the Lebesgue measure, \begin{equation*} (Kf)(x)=\int^b_ak(x,t)f(t)\mu(dt),\qquad x\in(a,b), \end{equation*} and $U^\pm$ are the desired Volterra operators. A necessary and sufficient condition is found for the existence of this factorization for a rather wide class of operators $K$ with positive kernels and for Hilbert–Schmidt operators.
Keywords: functions summable with respect to a measure, integral operators, Volterra factorization.
@article{IM2_2009_73_5_a2,
     author = {N. B. Engibaryan},
     title = {On the factorization of integral operators on spaces of summable functions},
     journal = {Izvestiya. Mathematics },
     pages = {921--937},
     publisher = {mathdoc},
     volume = {73},
     number = {5},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2009_73_5_a2/}
}
TY  - JOUR
AU  - N. B. Engibaryan
TI  - On the factorization of integral operators on spaces of summable functions
JO  - Izvestiya. Mathematics 
PY  - 2009
SP  - 921
EP  - 937
VL  - 73
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2009_73_5_a2/
LA  - en
ID  - IM2_2009_73_5_a2
ER  - 
%0 Journal Article
%A N. B. Engibaryan
%T On the factorization of integral operators on spaces of summable functions
%J Izvestiya. Mathematics 
%D 2009
%P 921-937
%V 73
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2009_73_5_a2/
%G en
%F IM2_2009_73_5_a2
N. B. Engibaryan. On the factorization of integral operators on spaces of summable functions. Izvestiya. Mathematics , Tome 73 (2009) no. 5, pp. 921-937. http://geodesic.mathdoc.fr/item/IM2_2009_73_5_a2/

[1] I. Ts. Gokhberg, M. G. Krein, Teoriya volterrovykh operatorov v gilbertovom prostranstve i ee prilozheniya, Nauka, M., 1967 ; I. C. Gohberg, M. G. Krein, Theory and applications of Volterra operators in Hilbert space, Transl. Math. Monogr., 24, Amer. Math. Soc., Providence, RI, 1970 | MR | MR | Zbl

[2] N. B. Engibaryan, “Nestatsionarnaya diffuziya izlucheniya”, Astrofizika, 2:2 (1966), 197–204

[3] H. H. Kagiwada, R. E. Kalaba, A. Schumitzky, “An initial-value method for Fredholm integral equations”, J. Math. Anal. Appl., 19:1 (1967), 197–203 | DOI | MR | Zbl

[4] N. B. Engibaryan, “On the factorization of symmetric integral operators”, Soviet Math. Dokl., 13:1 (1972), 322–325 | MR | Zbl

[5] N. B. Engibaryan, “O nelineinykh uravneniyakh faktorizatsii operatorov”, Primenenie metodov teorii funktsii i funkts. analiza k zadacham mat. fiziki, Izd-vo ErGU, Erevan, 1982, 123–128

[6] N. B. Engibaryan, “Some factorization theorems for integral operators”, Soviet Math. Dokl., 17:5 (1976), 1418–1422 | MR | Zbl

[7] L. G. Arabadzhyan, N. B. Engibaryan, “Convolution equations and nonlinear functional equations”, J. Math. Sci., 36:6 (1987), 745–791 | DOI | MR | Zbl | Zbl

[8] N. B. Engibaryan, “Setting and solving several factorization problems for integral operators”, Sb. Math., 191:12 (2000), 1809–1825 | DOI | MR | Zbl

[9] N. B. Yengibarian, “Factorization of Markov chains”, J. Theoret. Probab., 17:2 (2004), 459–481 | DOI | MR | Zbl

[10] M. A. Krasnosel'skij, P. P. Zabrejko, E. I. Pustylnik, P. E. Sobolevskij, Integral operators in spaces of summable functions, Noordhoff, Leyden, 1976 | MR | MR | Zbl | Zbl