Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2009_73_5_a1, author = {A. Elagin}, title = {Semiorthogonal decompositions of derived categories of equivariant coherent sheaves}, journal = {Izvestiya. Mathematics }, pages = {893--920}, publisher = {mathdoc}, volume = {73}, number = {5}, year = {2009}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2009_73_5_a1/} }
A. Elagin. Semiorthogonal decompositions of derived categories of equivariant coherent sheaves. Izvestiya. Mathematics , Tome 73 (2009) no. 5, pp. 893-920. http://geodesic.mathdoc.fr/item/IM2_2009_73_5_a1/
[1] A. Samokhin, “Some remarks on the derived categories of coherent sheaves on homogeneous spaces”, J. Lond. Math. Soc. (2), 76:1 (2007), 122–134 | DOI | MR | Zbl
[2] M. Bernardara, A semiorthogonal decomposition for Brauer Severi schemes, arXiv:math.AG/0511497
[3] K. S. Brown, Cohomology of groups, Grad. Texts in Math., 87, Springer-Verlag, New York–Heidelberg–Berlin, 1982 | MR | MR | Zbl | Zbl
[4] A. I. Bondal, “Representation of associative algebras and coherent sheaves”, Math. USSR-Izv., 34:1 (1990), 23–42 | DOI | MR | Zbl
[5] B. Keller, “Derived categories and their use”, Handbook of algebra, vol. 1, North-Holland, Amsterdam, 1996, 671–701 | MR | Zbl
[6] M. M. Kapranov, “The derived category of coherent sheaves on the square”, Funct. Anal. Appl., 20:2 (1986), 141–142 | DOI | MR | Zbl
[7] M. M. Kapranov, “On the derived categories of coherent sheaves on some homogeneous spaces”, Invent. Math., 92:3 (1988), 479–508 | DOI | MR | Zbl
[8] D. O. Orlov, “Projective bundles, monoidal transformations, and derived categories of coherent sheaves”, Russian Acad. Sci. Izv. Math., 41:1 (1993), 133–141 | DOI | MR | Zbl
[9] B. V. Karpov, D. Yu. Nogin, “Three-block exceptional collections over Del Pezzo surfaces”, Izv. Math., 62:3 (1998), 429–463 | DOI | MR | Zbl
[10] M. M. Kapranov, “On the derived category of coherent sheaves on Grassmann manifolds”, Math. USSR-Izv., 24:1 (1985), 183–192 | DOI | MR | Zbl
[11] W. Fulton, Young tableaux. With applications to representation theory and geometry, London Math. Soc. Stud. Texts, 35, Cambridge Univ. Press, Cambridge, 1997 | MR | Zbl