Semiorthogonal decompositions of derived categories of equivariant coherent sheaves
Izvestiya. Mathematics , Tome 73 (2009) no. 5, pp. 893-920.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X$ be an algebraic variety with an action of an algebraic group $G$. Suppose that $X$ has a full exceptional collection of sheaves and these sheaves are invariant under the action of the group. We construct a semiorthogonal decomposition of the bounded derived category of $G$-equivariant coherent sheaves on $X$ into components that are equivalent to the derived categories of twisted representations of $G$. If the group is finite or reductive over an algebraically closed field of characteristic 0, this gives a full exceptional collection in the derived equivariant category. We apply our results to particular varieties such as projective spaces, quadrics, Grassmannians and del Pezzo surfaces.
Keywords: exceptional collection, twisted sheaf.
Mots-clés : semiorthogonal decomposition
@article{IM2_2009_73_5_a1,
     author = {A. Elagin},
     title = {Semiorthogonal decompositions of derived categories of equivariant coherent sheaves},
     journal = {Izvestiya. Mathematics },
     pages = {893--920},
     publisher = {mathdoc},
     volume = {73},
     number = {5},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2009_73_5_a1/}
}
TY  - JOUR
AU  - A. Elagin
TI  - Semiorthogonal decompositions of derived categories of equivariant coherent sheaves
JO  - Izvestiya. Mathematics 
PY  - 2009
SP  - 893
EP  - 920
VL  - 73
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2009_73_5_a1/
LA  - en
ID  - IM2_2009_73_5_a1
ER  - 
%0 Journal Article
%A A. Elagin
%T Semiorthogonal decompositions of derived categories of equivariant coherent sheaves
%J Izvestiya. Mathematics 
%D 2009
%P 893-920
%V 73
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2009_73_5_a1/
%G en
%F IM2_2009_73_5_a1
A. Elagin. Semiorthogonal decompositions of derived categories of equivariant coherent sheaves. Izvestiya. Mathematics , Tome 73 (2009) no. 5, pp. 893-920. http://geodesic.mathdoc.fr/item/IM2_2009_73_5_a1/

[1] A. Samokhin, “Some remarks on the derived categories of coherent sheaves on homogeneous spaces”, J. Lond. Math. Soc. (2), 76:1 (2007), 122–134 | DOI | MR | Zbl

[2] M. Bernardara, A semiorthogonal decomposition for Brauer Severi schemes, arXiv:math.AG/0511497

[3] K. S. Brown, Cohomology of groups, Grad. Texts in Math., 87, Springer-Verlag, New York–Heidelberg–Berlin, 1982 | MR | MR | Zbl | Zbl

[4] A. I. Bondal, “Representation of associative algebras and coherent sheaves”, Math. USSR-Izv., 34:1 (1990), 23–42 | DOI | MR | Zbl

[5] B. Keller, “Derived categories and their use”, Handbook of algebra, vol. 1, North-Holland, Amsterdam, 1996, 671–701 | MR | Zbl

[6] M. M. Kapranov, “The derived category of coherent sheaves on the square”, Funct. Anal. Appl., 20:2 (1986), 141–142 | DOI | MR | Zbl

[7] M. M. Kapranov, “On the derived categories of coherent sheaves on some homogeneous spaces”, Invent. Math., 92:3 (1988), 479–508 | DOI | MR | Zbl

[8] D. O. Orlov, “Projective bundles, monoidal transformations, and derived categories of coherent sheaves”, Russian Acad. Sci. Izv. Math., 41:1 (1993), 133–141 | DOI | MR | Zbl

[9] B. V. Karpov, D. Yu. Nogin, “Three-block exceptional collections over Del Pezzo surfaces”, Izv. Math., 62:3 (1998), 429–463 | DOI | MR | Zbl

[10] M. M. Kapranov, “On the derived category of coherent sheaves on Grassmann manifolds”, Math. USSR-Izv., 24:1 (1985), 183–192 | DOI | MR | Zbl

[11] W. Fulton, Young tableaux. With applications to representation theory and geometry, London Math. Soc. Stud. Texts, 35, Cambridge Univ. Press, Cambridge, 1997 | MR | Zbl