On subgroups of free Burnside groups of odd exponent $n\geqslant 1003$
Izvestiya. Mathematics , Tome 73 (2009) no. 5, pp. 861-892.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that for any odd number $n\geqslant 1003$, every non-cyclic subgroup of the 2-generator free Burnside group of exponent $n$ contains a subgroup isomorphic to the free Burnside group of exponent $n$ and infinite rank. Various families of relatively free $n$-periodic subgroups are constructed in free periodic groups of odd exponent $n\ge 665$. For the same groups, we describe a monomorphism $\tau$ such that a word $A$ is an elementary period of rank $\alpha$ if and only if its image $\tau(A)$ is an elementary period of rank $\alpha+1$.
Keywords: free Burnside group, variety of periodic groups, group with cyclic subgroups, periodic word, reduced word.
@article{IM2_2009_73_5_a0,
     author = {V. S. Atabekian},
     title = {On subgroups of free {Burnside} groups of odd exponent $n\geqslant 1003$},
     journal = {Izvestiya. Mathematics },
     pages = {861--892},
     publisher = {mathdoc},
     volume = {73},
     number = {5},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2009_73_5_a0/}
}
TY  - JOUR
AU  - V. S. Atabekian
TI  - On subgroups of free Burnside groups of odd exponent $n\geqslant 1003$
JO  - Izvestiya. Mathematics 
PY  - 2009
SP  - 861
EP  - 892
VL  - 73
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2009_73_5_a0/
LA  - en
ID  - IM2_2009_73_5_a0
ER  - 
%0 Journal Article
%A V. S. Atabekian
%T On subgroups of free Burnside groups of odd exponent $n\geqslant 1003$
%J Izvestiya. Mathematics 
%D 2009
%P 861-892
%V 73
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2009_73_5_a0/
%G en
%F IM2_2009_73_5_a0
V. S. Atabekian. On subgroups of free Burnside groups of odd exponent $n\geqslant 1003$. Izvestiya. Mathematics , Tome 73 (2009) no. 5, pp. 861-892. http://geodesic.mathdoc.fr/item/IM2_2009_73_5_a0/

[1] S. I. Adyan, “The subgroups of free periodic groups of odd exponent”, Proc. Steklov Inst. Math., 112 (1971), 61–69 | MR | Zbl

[2] S. I. Adian, The Burnside problem and identities in groups, Ergeb. Math. Grenzgeb., 95, Springer-Verlag, Berlin–Heidelberg–New York, 1979 | MR | MR | Zbl | Zbl

[3] H. Neumann, Varieties of groups, Springer-Verlag, Berlin–Heidelberg–New York, 1967 | MR | MR | Zbl

[4] V. L. Širvanjan, “Embedding the group $\mathbf B(\infty,n)$ in the group $\mathbf B(2,n)$”, Math. USSR-Izv., 10:1 (1976), 181–199 | DOI | MR | Zbl | Zbl

[5] P. S. Novikov, S. I. Adjan, “Infinite periodic groups. I, II, III”, Math. USSR-Izv., 2:1 (1968), 209–236 | DOI | DOI | DOI | MR | MR | MR | Zbl

[6] S. I. Adyan, “Investigations on the Burnside problem and questions connected with it”, Proc. Steklov Inst. Math., 168 (1986), 179–205 | MR | Zbl | Zbl

[7] S. I. Adyan, “Problema Bernsaida o periodicheskikh gruppakh i smezhnye voprosy”, Sovr. probl. matem., 2003, no. 1, 5–28 | DOI | MR

[8] I. G. Lysenok, “Infinite Burnside groups of even exponent”, Izv. Math., 60:3 (1996), 453–654 | DOI | MR | Zbl

[9] S. I. Adyan, “Random walks on free periodic groups”, Math. USSR-Izv., 21:3 (1983), 425–434 | DOI | MR | Zbl

[10] P. M. Neumann, J. Wiegold, “Schreier varieties of groups”, Math. Z., 85:5 (1964), 392–400 | DOI | MR | Zbl

[11] A. Yu. Ol'shanskii, “Self-normalization of free subgroups in the free Burnside groups”, Groups, rings, Lie and Hopf algebras (St. John's, NF, Canada, 2001), Math. Appl., 555, Kluwer Acad. Publ., Dordrecht, 2003, 179–187 | MR | Zbl

[12] V. D. Mazurov, Yu. I. Merzlyakov, V. A. Churkin (eds.), The Kourovka notebook. Unsolved problems in group theory, ed. 8, Institute of Math., Novosibirsk, 1982 | MR | Zbl

[13] M. F. Newman, “Problems”, Burnside groups (Univ. Bielefeld, Bielefeld, 1977), Lect. Notes Math., 806, Springer-Verlag, Berlin, 1980, 249–254 | DOI | MR | Zbl

[14] V. S. Atabekyan, Ob approksimatsii i podgruppakh svobodnykh periodicheskikh grupp, dep. v VINITI 5380-V86

[15] V. S. Atabekyan, “Simple and free periodic groups”, Moscow Univ. Math. Bull., 42:6 (1987), 80–82 | MR | Zbl | Zbl

[16] A. Yu. Ol'shanskii, Geometry of defining relations in groups, Math. Appl. (Soviet Ser.), 70, Kluwer Acad. Publ., Dordrecht, 1991 | MR | MR | Zbl | Zbl

[17] A. Yu. Ol'shanskii, “Groups of bounded period with subgroups of prime order”, Algebra and Logic, 21:5 (1982), 369–418 | DOI | MR | Zbl

[18] S. I. Adyan, I. G. Lysenok, “On groups all of whose proper subgroups are finite cyclic”, Math. USSR-Izv., 39:2 (1992), 905–957 | DOI | MR | Zbl