Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2009_73_4_a5, author = {V. V. Shevchishin}, title = {Lagrangian embeddings of the {Klein} bottle and combinatorial properties of mapping class groups}, journal = {Izvestiya. Mathematics }, pages = {797--859}, publisher = {mathdoc}, volume = {73}, number = {4}, year = {2009}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2009_73_4_a5/} }
TY - JOUR AU - V. V. Shevchishin TI - Lagrangian embeddings of the Klein bottle and combinatorial properties of mapping class groups JO - Izvestiya. Mathematics PY - 2009 SP - 797 EP - 859 VL - 73 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2009_73_4_a5/ LA - en ID - IM2_2009_73_4_a5 ER -
V. V. Shevchishin. Lagrangian embeddings of the Klein bottle and combinatorial properties of mapping class groups. Izvestiya. Mathematics , Tome 73 (2009) no. 4, pp. 797-859. http://geodesic.mathdoc.fr/item/IM2_2009_73_4_a5/
[1] J. Amorós, F. Bogomolov, L. Katzarkov, T. Pantev, “Symplectic Lefschetz fibrations with arbitrary fundamental groups”, J. Differential Geom., 54:3 (2000), 489–545 | MR | Zbl
[2] V. I. Arnol'd, A. B. Givental', “Symplectic geometry”, Dynamical systems. IV. Symplectic geometry and its applications, Encyclopaedia Math. Sci., 4, Springer-Verlag, Berlin, 1990, 1–136 | MR | MR | Zbl
[3] V. I. Arnol'd, S. M. Gusejn-Zade, A. N. Varchenko, Singularities of differentiable maps. Vol. II: Monodromy and asymptotics of integrals, Monogr. Math., 83, Birkhäuser, Boston, MA, 1988 | MR | MR | Zbl | Zbl
[4] M. Audin, “Quelques remarques sur les surfaces lagrangiennes de Givental”, J. Geom. Phys., 7:4 (1990), 583–598 | DOI | MR | Zbl
[5] D. Auroux, “A stable classification of Lefschetz fibrations”, Geom. Topol., 9 (2005), 203–217 | DOI | MR | Zbl
[6] D. Auroux, S. K. Donaldson, L. Katzarkov, “Luttinger surgery along Lagrangian tori and non-isotopy for singular symplectic plane curves”, Math. Ann., 326:1 (2003), 185–203 | DOI | MR | Zbl
[7] D. Auroux, V. Muñoz, F. Presas, “Lagrangian submanifolds and Lefschetz pencils”, J. Symplectic Geom., 3:2 (2005), 171–219 | MR | Zbl
[8] J. S. Birman, “Mapping class groups of surfaces”, Proceedings of Conference on Braids (Santa Cruz, CA, 1986), Contemp. Math., 78, Amer. Math. Soc., Providence, RI, 1988, 13–43 | MR | Zbl
[9] J. S. Birman, Braids, links, and mapping class groups, Annals of Math. Studies, 82, Princeton Univ. Press, Princeton, NJ; Univ. of Tokyo Press, Tokyo, 1975 | MR | Zbl
[10] J. S. Birman, B. Wajnryb, “Errata: Presentations of the mapping class group”, Israel J. Math., 88:1–3 (1994), 425–427 | DOI | MR | Zbl
[11] F. Bogomolov, L. Katzarkov, T. Pantev, “Hyperelliptic Szpiro inequality”, J. Differential Geom., 61:1 (2002), 51–80 | MR | Zbl
[12] F. Bogomolov, Yu. Tschinkel, “Simple examples of symplectic four-manifolds with exotic properties”, Acta Appl. Math., 75:1–3 (2003), 25–28 | DOI | MR | Zbl
[13] E. Brieskorn, K. Saito, “Artin-Gruppen und Coxeter-Gruppen”, Invent. Math., 17:4 (1972), 245–271 | DOI | MR | Zbl
[14] K. S. Brown, Cohomology of groups, Grad. Texts in Math., 87, Springer-Verlag, New York–Heidelberg–Berlin, 1982 | MR | MR | Zbl | Zbl
[15] N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles, 1337, Hermann, Paris, 1968 | MR | MR | Zbl | Zbl
[16] D. J. Collins, H. Zieschang, “Combinatorial group theory and fundamental groups”, Algebra VII. Combinatorial group theory. Applications to geometry, Encyclopaedia Math. Sci., 58, Springer-Verlag, Berlin, 1993, 1–166 | MR | MR | Zbl
[17] M. Dehn, “Die Gruppe der Abbildungsklassen”, Acta Math., 69:1 (1938), 135–206 | DOI | MR | Zbl
[18] P. Deligne, “Les immeubles des groupes de tresses généralisés”, Invent. Math., 17:4 (1972), 273–302 | DOI | MR | Zbl
[19] S. K. Donaldson, “Lefschetz fibrations in symplectic geometry”, Proceedings of the International Congress of Mathematicians (Berlin, 1998), Doc. Math., Extra Vol. II, 1998, 309–314 | MR | Zbl
[20] Ya. Eliashberg, L. Polterovich, “New applications of Luttinger's surgery”, Comment. Math. Helv., 69:1 (1994), 512–522 | DOI | MR | Zbl
[21] D. Gatien, F. Lalonde, “Holomorphic cylinders with Lagrangian boundaries and Hamiltonian dynamics”, Duke Math. J., 102:3 (2000), 485–511 | DOI | MR | Zbl
[22] S. Gervais, “Presentation and central extensions of mapping class groups”, Trans. Amer. Math. Soc., 348:8 (1996), 3097–3132 | DOI | MR | Zbl
[23] A. B. Givental', “Lagrangian imbeddings of surfaces and unfolded Whitney umbrella”, Funct. Anal. Appl., 20:3 (1986), 197–203 | DOI | MR | Zbl
[24] R. E. Gompf, A. I. Stipsicz, 4-manifolds and Kirby calculus, Grad. Stud. Math., 20, Amer. Math. Soc., Providence, RI, 1999 | MR | Zbl
[25] R. E. Gompf, “Toward a topological characterization of symplectic manifolds”, J. Symplectic Geom., 2:2 (2004), 177–206 | MR | Zbl
[26] Ph. Griffiths, J. Harris, Principles of algebraic geometry, Wiley, New York, 1978 | MR | MR | Zbl | Zbl
[27] J. E. Humphreys, Reflection groups and Coxeter groups, Cambridge Stud. Adv. Math., 29, Cambridge Univ. Press, Cambridge, 1990 | MR | Zbl
[28] N. V. Ivanov, “Mapping class groups”, Handbook of geometric topology, Elsevier, Amsterdam, 2002, 523–633 | MR | Zbl
[29] D. Johnson, “The structure of the Torelli group. I. A finite set of generators for $\mathscr I$”, Ann. of Math. (2), 118:3 (1983), 423–442 | DOI | MR | Zbl
[30] D. Johnson, “A survey of the Torelli group”, Low-dimensional topology (San Francisco, CA, 1981), Contemp. Math., 20, Amer. Math. Soc., Providence, RI, 1983, 165–179 | MR | Zbl
[31] V. Kanev, Irreducibility of Hurwitz spaces, Preprint No 241, Dipartimento di Matematica, Universitá di Palermo
[32] V. M. Kharlamov, V. S. Kulikov, “On braid monodromy factorizations”, Izv. Math., 67:3 (2003), 499–534 | DOI | MR | Zbl
[33] K. M. Luttinger, “Lagrangian tori in $\mathbb R^4$”, J. Differential Geom., 42:2 (1995), 220–228 | MR | Zbl
[34] R. C. Lyndon, P. E. Schupp, Combinatorial group theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, 89, Springer-Verlag, Berlin–New-York, 1977 | MR | MR | Zbl | Zbl
[35] M. Matsumoto, “A presentation of mapping class groups in terms of Artin groups and geometric monodromy of singularities”, Math. Ann., 316:3 (2000), 401–418 | DOI | MR | Zbl
[36] D. McDuff, D. Salamon, “A survey of symplectic 4-manifolds with $b_+ =1$”, Turkish J. Math., 20:1 (1996), 47–60 | MR | Zbl
[37] K. Mohnke, How to (symplectically) thread the eye of a (Lagrangian) needle, arXiv: math.SG/0106139
[38] S. Yu. Nemirovski, “Lefschetz pencils, Morse functions, and Lagrangian embeddings of the Klein bottle”, Izv. Math., 66:1 (2002), 151–164 | DOI | MR | Zbl
[39] S. Yu. Nemirovski, “Homology class of a Lagrangian Klein bottle”, Izv. Math., 73:4 (2009), 689–698
[40] J. Powell, “Two theorems on the mapping class group of a surface”, Proc. Amer. Math. Soc., 68:3 (1978), 347–350 | DOI | MR | Zbl
[41] W. Rudin, “Shorter notes: totally real Klein bottles in $C^2$”, Proc. Amer. Math. Soc., 82:4 (1981), 653–654 | DOI | MR | Zbl
[42] B. Wajnryb, “A simple presentation for the mapping class group of an orientable surface”, Israel J. Math., 45:2–3 (1983), 157–174 | DOI | MR | Zbl