Lagrangian embeddings of the Klein bottle and combinatorial properties of mapping class groups
Izvestiya. Mathematics , Tome 73 (2009) no. 4, pp. 797-859.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we prove the non-existence of Lagrangian embeddings of the Klein bottle $K$ in $\mathbb{R}^4$ and $\mathbb{C}\mathbb{P}^2$. We exploit the existence of a special embedding of $K$ in a symplectic Lefschetz pencil $\operatorname{pr}\colon X \to S^2$ and study its monodromy. As the main technical tool, we develop the combinatorial theory of mapping class groups. The results obtained enable us to show that in the case when the class $[K]\in\mathsf{H}_2(X,\mathbb{Z}_2)$ is trivial, the monodromy of $\operatorname{pr}\colon X\to S^2$ must be of a special form. Finally, we show that such a monodromy cannot be realized in $\mathbb{C}\mathbb{P}^2$.
Keywords: symplectic geometry, Lagrangian submanifold, mapping class group, Coxeter system, Artin–Brieskorn group.
Mots-clés : Lefschetz pencil, monodromy
@article{IM2_2009_73_4_a5,
     author = {V. V. Shevchishin},
     title = {Lagrangian embeddings of the {Klein} bottle and combinatorial properties of mapping class groups},
     journal = {Izvestiya. Mathematics },
     pages = {797--859},
     publisher = {mathdoc},
     volume = {73},
     number = {4},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2009_73_4_a5/}
}
TY  - JOUR
AU  - V. V. Shevchishin
TI  - Lagrangian embeddings of the Klein bottle and combinatorial properties of mapping class groups
JO  - Izvestiya. Mathematics 
PY  - 2009
SP  - 797
EP  - 859
VL  - 73
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2009_73_4_a5/
LA  - en
ID  - IM2_2009_73_4_a5
ER  - 
%0 Journal Article
%A V. V. Shevchishin
%T Lagrangian embeddings of the Klein bottle and combinatorial properties of mapping class groups
%J Izvestiya. Mathematics 
%D 2009
%P 797-859
%V 73
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2009_73_4_a5/
%G en
%F IM2_2009_73_4_a5
V. V. Shevchishin. Lagrangian embeddings of the Klein bottle and combinatorial properties of mapping class groups. Izvestiya. Mathematics , Tome 73 (2009) no. 4, pp. 797-859. http://geodesic.mathdoc.fr/item/IM2_2009_73_4_a5/

[1] J. Amorós, F. Bogomolov, L. Katzarkov, T. Pantev, “Symplectic Lefschetz fibrations with arbitrary fundamental groups”, J. Differential Geom., 54:3 (2000), 489–545 | MR | Zbl

[2] V. I. Arnol'd, A. B. Givental', “Symplectic geometry”, Dynamical systems. IV. Symplectic geometry and its applications, Encyclopaedia Math. Sci., 4, Springer-Verlag, Berlin, 1990, 1–136 | MR | MR | Zbl

[3] V. I. Arnol'd, S. M. Gusejn-Zade, A. N. Varchenko, Singularities of differentiable maps. Vol. II: Monodromy and asymptotics of integrals, Monogr. Math., 83, Birkhäuser, Boston, MA, 1988 | MR | MR | Zbl | Zbl

[4] M. Audin, “Quelques remarques sur les surfaces lagrangiennes de Givental”, J. Geom. Phys., 7:4 (1990), 583–598 | DOI | MR | Zbl

[5] D. Auroux, “A stable classification of Lefschetz fibrations”, Geom. Topol., 9 (2005), 203–217 | DOI | MR | Zbl

[6] D. Auroux, S. K. Donaldson, L. Katzarkov, “Luttinger surgery along Lagrangian tori and non-isotopy for singular symplectic plane curves”, Math. Ann., 326:1 (2003), 185–203 | DOI | MR | Zbl

[7] D. Auroux, V. Muñoz, F. Presas, “Lagrangian submanifolds and Lefschetz pencils”, J. Symplectic Geom., 3:2 (2005), 171–219 | MR | Zbl

[8] J. S. Birman, “Mapping class groups of surfaces”, Proceedings of Conference on Braids (Santa Cruz, CA, 1986), Contemp. Math., 78, Amer. Math. Soc., Providence, RI, 1988, 13–43 | MR | Zbl

[9] J. S. Birman, Braids, links, and mapping class groups, Annals of Math. Studies, 82, Princeton Univ. Press, Princeton, NJ; Univ. of Tokyo Press, Tokyo, 1975 | MR | Zbl

[10] J. S. Birman, B. Wajnryb, “Errata: Presentations of the mapping class group”, Israel J. Math., 88:1–3 (1994), 425–427 | DOI | MR | Zbl

[11] F. Bogomolov, L. Katzarkov, T. Pantev, “Hyperelliptic Szpiro inequality”, J. Differential Geom., 61:1 (2002), 51–80 | MR | Zbl

[12] F. Bogomolov, Yu. Tschinkel, “Simple examples of symplectic four-manifolds with exotic properties”, Acta Appl. Math., 75:1–3 (2003), 25–28 | DOI | MR | Zbl

[13] E. Brieskorn, K. Saito, “Artin-Gruppen und Coxeter-Gruppen”, Invent. Math., 17:4 (1972), 245–271 | DOI | MR | Zbl

[14] K. S. Brown, Cohomology of groups, Grad. Texts in Math., 87, Springer-Verlag, New York–Heidelberg–Berlin, 1982 | MR | MR | Zbl | Zbl

[15] N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles, 1337, Hermann, Paris, 1968 | MR | MR | Zbl | Zbl

[16] D. J. Collins, H. Zieschang, “Combinatorial group theory and fundamental groups”, Algebra VII. Combinatorial group theory. Applications to geometry, Encyclopaedia Math. Sci., 58, Springer-Verlag, Berlin, 1993, 1–166 | MR | MR | Zbl

[17] M. Dehn, “Die Gruppe der Abbildungsklassen”, Acta Math., 69:1 (1938), 135–206 | DOI | MR | Zbl

[18] P. Deligne, “Les immeubles des groupes de tresses généralisés”, Invent. Math., 17:4 (1972), 273–302 | DOI | MR | Zbl

[19] S. K. Donaldson, “Lefschetz fibrations in symplectic geometry”, Proceedings of the International Congress of Mathematicians (Berlin, 1998), Doc. Math., Extra Vol. II, 1998, 309–314 | MR | Zbl

[20] Ya. Eliashberg, L. Polterovich, “New applications of Luttinger's surgery”, Comment. Math. Helv., 69:1 (1994), 512–522 | DOI | MR | Zbl

[21] D. Gatien, F. Lalonde, “Holomorphic cylinders with Lagrangian boundaries and Hamiltonian dynamics”, Duke Math. J., 102:3 (2000), 485–511 | DOI | MR | Zbl

[22] S. Gervais, “Presentation and central extensions of mapping class groups”, Trans. Amer. Math. Soc., 348:8 (1996), 3097–3132 | DOI | MR | Zbl

[23] A. B. Givental', “Lagrangian imbeddings of surfaces and unfolded Whitney umbrella”, Funct. Anal. Appl., 20:3 (1986), 197–203 | DOI | MR | Zbl

[24] R. E. Gompf, A. I. Stipsicz, 4-manifolds and Kirby calculus, Grad. Stud. Math., 20, Amer. Math. Soc., Providence, RI, 1999 | MR | Zbl

[25] R. E. Gompf, “Toward a topological characterization of symplectic manifolds”, J. Symplectic Geom., 2:2 (2004), 177–206 | MR | Zbl

[26] Ph. Griffiths, J. Harris, Principles of algebraic geometry, Wiley, New York, 1978 | MR | MR | Zbl | Zbl

[27] J. E. Humphreys, Reflection groups and Coxeter groups, Cambridge Stud. Adv. Math., 29, Cambridge Univ. Press, Cambridge, 1990 | MR | Zbl

[28] N. V. Ivanov, “Mapping class groups”, Handbook of geometric topology, Elsevier, Amsterdam, 2002, 523–633 | MR | Zbl

[29] D. Johnson, “The structure of the Torelli group. I. A finite set of generators for $\mathscr I$”, Ann. of Math. (2), 118:3 (1983), 423–442 | DOI | MR | Zbl

[30] D. Johnson, “A survey of the Torelli group”, Low-dimensional topology (San Francisco, CA, 1981), Contemp. Math., 20, Amer. Math. Soc., Providence, RI, 1983, 165–179 | MR | Zbl

[31] V. Kanev, Irreducibility of Hurwitz spaces, Preprint No 241, Dipartimento di Matematica, Universitá di Palermo

[32] V. M. Kharlamov, V. S. Kulikov, “On braid monodromy factorizations”, Izv. Math., 67:3 (2003), 499–534 | DOI | MR | Zbl

[33] K. M. Luttinger, “Lagrangian tori in $\mathbb R^4$”, J. Differential Geom., 42:2 (1995), 220–228 | MR | Zbl

[34] R. C. Lyndon, P. E. Schupp, Combinatorial group theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, 89, Springer-Verlag, Berlin–New-York, 1977 | MR | MR | Zbl | Zbl

[35] M. Matsumoto, “A presentation of mapping class groups in terms of Artin groups and geometric monodromy of singularities”, Math. Ann., 316:3 (2000), 401–418 | DOI | MR | Zbl

[36] D. McDuff, D. Salamon, “A survey of symplectic 4-manifolds with $b_+ =1$”, Turkish J. Math., 20:1 (1996), 47–60 | MR | Zbl

[37] K. Mohnke, How to (symplectically) thread the eye of a (Lagrangian) needle, arXiv: math.SG/0106139

[38] S. Yu. Nemirovski, “Lefschetz pencils, Morse functions, and Lagrangian embeddings of the Klein bottle”, Izv. Math., 66:1 (2002), 151–164 | DOI | MR | Zbl

[39] S. Yu. Nemirovski, “Homology class of a Lagrangian Klein bottle”, Izv. Math., 73:4 (2009), 689–698

[40] J. Powell, “Two theorems on the mapping class group of a surface”, Proc. Amer. Math. Soc., 68:3 (1978), 347–350 | DOI | MR | Zbl

[41] W. Rudin, “Shorter notes: totally real Klein bottles in $C^2$”, Proc. Amer. Math. Soc., 82:4 (1981), 653–654 | DOI | MR | Zbl

[42] B. Wajnryb, “A simple presentation for the mapping class group of an orientable surface”, Israel J. Math., 45:2–3 (1983), 157–174 | DOI | MR | Zbl