Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2009_73_4_a3, author = {R. M. Trigub}, title = {Pointwise approximation of periodic functions by trigonometric polynomials with {Hermitian} interpolation}, journal = {Izvestiya. Mathematics }, pages = {699--726}, publisher = {mathdoc}, volume = {73}, number = {4}, year = {2009}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2009_73_4_a3/} }
TY - JOUR AU - R. M. Trigub TI - Pointwise approximation of periodic functions by trigonometric polynomials with Hermitian interpolation JO - Izvestiya. Mathematics PY - 2009 SP - 699 EP - 726 VL - 73 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2009_73_4_a3/ LA - en ID - IM2_2009_73_4_a3 ER -
R. M. Trigub. Pointwise approximation of periodic functions by trigonometric polynomials with Hermitian interpolation. Izvestiya. Mathematics , Tome 73 (2009) no. 4, pp. 699-726. http://geodesic.mathdoc.fr/item/IM2_2009_73_4_a3/
[1] V. K. Dzyadyk, Vvedenie v teoriyu ravnomernogo priblizheniya funktsii polinomami, Nauka, M., 1977 | MR | Zbl
[2] R. M. Trigub, E. S. Bellinsky, Fourier analysis and approximation of functions, Kluwer Acad. Publ., Dordrecht, 2004 | MR | Zbl
[3] R. M. Trigub, “A general direct theorem on approximation of functions of class $C^r$ by algebraic polynomials with Hermitian interpolation”, Dokl. Math., 66:2 (2002), 247–249 | MR | Zbl
[4] R. M. Trigub, “Approximation of functions by polynomials with Hermitian interpolation and restrictions on the coefficients”, Izv. Math., 67:1 (2003), 183–206 | DOI | MR | Zbl
[5] I. E. Gopengauz, “Pointwise estimates of the Hermitian interpolation”, J. Approx. Theory, 77:1 (1994), 31–41 | DOI | MR | Zbl
[6] K. Kopotun, “Simultaneous approximation by algebraic polynomials”, Constr. Approx., 12:1 (1996), 67–94 | DOI | MR | Zbl
[7] M. G. Pleshakov, P. A. Popov, “Second Jackson inequality in a sign-preserving approximation of periodic functions”, Ukrainian Math. J., 56:1 (2004), 153–160 | DOI | MR | Zbl
[8] A. Zygmund, Trigonometric series, vol. II, Cambridge Univ. Press, New York, 1959 | MR | Zbl | Zbl
[9] M. A. Subkhankulov, Tauberovy teoremy s ostatkom, Nauka, M., 1976 | MR
[10] R. M. Trigub, “Odnostoronnie i komonotonnye priblizheniya algebraicheskimi polinomami s polozhitelnymi koeffitsientami”, Teoriya priblizhenii i ee prilozheniya (Kiev, Ukraina, 1999), In-t matem. NAN Ukr., Kiev, 2000, 461–476 | MR | Zbl
[11] R. M. Trigub, “Priblizhenie periodicheskikh funktsii trigonometricheskimi polinomami s ermitovskoi interpolyatsiei i uchetom polozheniya tochki. Kusochno odnostoronnyaya approksimatsiya”, Dopovidi NAN Ukr., 5 (2006), 19–22 | MR | Zbl
[12] Bl. Sendov, “The constants of H. Whitney are bounded”, C. R. Acad. Bulgare Sci., 38 (1985), 1299–1302 | MR | Zbl
[13] Ph. Hartman, Ordinary differential equations, Wiley, New York–London–Sydney, 1964 | MR | MR | Zbl | Zbl
[14] G. Pólya, G. Szegö, Aufgaben und Lehrsätze aus der Analysis. Zweiter Band. Funktionentheorie, Nullstellen, Polynome, Determinanten, Zahlentheorie, Julius Springer, Berlin, 1925 | MR | MR | Zbl
[15] J. Bergh, J. Löfström, Interpolation spaces. An introduction, Grundlehren der Mathematischen Wissenschaften, 223, Springer-Verlag, Berlin–Heidelberg–New York, 1976 | MR | MR | Zbl