Pointwise approximation of periodic functions by trigonometric polynomials with Hermitian interpolation
Izvestiya. Mathematics , Tome 73 (2009) no. 4, pp. 699-726.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove a general direct theorem on the simultaneous pointwise approximation of smooth periodic functions and their derivatives by trigonometric polynomials and their derivatives with Hermitian interpolation. We study the order of approximation by polynomials whose graphs lie above or below the graph of the function on certain intervals. We prove several inequalities for Hermitian interpolation with absolute constants (for any system of nodes). For the first time we get a theorem on the best-order approximation of functions by polynomials with interpolation at a given system of nodes. We also provide a construction of Hermitian interpolating trigonometric polynomials for periodic functions (in the case of one node, these are trigonometric Taylor polynomials).
Keywords: trigonometric Taylor polynomial, best approximation, modulus of smoothness, two-sided approximation estimates, piecewise one-sided approximation, factorization of differential operators.
@article{IM2_2009_73_4_a3,
     author = {R. M. Trigub},
     title = {Pointwise approximation of periodic functions by trigonometric polynomials with {Hermitian} interpolation},
     journal = {Izvestiya. Mathematics },
     pages = {699--726},
     publisher = {mathdoc},
     volume = {73},
     number = {4},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2009_73_4_a3/}
}
TY  - JOUR
AU  - R. M. Trigub
TI  - Pointwise approximation of periodic functions by trigonometric polynomials with Hermitian interpolation
JO  - Izvestiya. Mathematics 
PY  - 2009
SP  - 699
EP  - 726
VL  - 73
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2009_73_4_a3/
LA  - en
ID  - IM2_2009_73_4_a3
ER  - 
%0 Journal Article
%A R. M. Trigub
%T Pointwise approximation of periodic functions by trigonometric polynomials with Hermitian interpolation
%J Izvestiya. Mathematics 
%D 2009
%P 699-726
%V 73
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2009_73_4_a3/
%G en
%F IM2_2009_73_4_a3
R. M. Trigub. Pointwise approximation of periodic functions by trigonometric polynomials with Hermitian interpolation. Izvestiya. Mathematics , Tome 73 (2009) no. 4, pp. 699-726. http://geodesic.mathdoc.fr/item/IM2_2009_73_4_a3/

[1] V. K. Dzyadyk, Vvedenie v teoriyu ravnomernogo priblizheniya funktsii polinomami, Nauka, M., 1977 | MR | Zbl

[2] R. M. Trigub, E. S. Bellinsky, Fourier analysis and approximation of functions, Kluwer Acad. Publ., Dordrecht, 2004 | MR | Zbl

[3] R. M. Trigub, “A general direct theorem on approximation of functions of class $C^r$ by algebraic polynomials with Hermitian interpolation”, Dokl. Math., 66:2 (2002), 247–249 | MR | Zbl

[4] R. M. Trigub, “Approximation of functions by polynomials with Hermitian interpolation and restrictions on the coefficients”, Izv. Math., 67:1 (2003), 183–206 | DOI | MR | Zbl

[5] I. E. Gopengauz, “Pointwise estimates of the Hermitian interpolation”, J. Approx. Theory, 77:1 (1994), 31–41 | DOI | MR | Zbl

[6] K. Kopotun, “Simultaneous approximation by algebraic polynomials”, Constr. Approx., 12:1 (1996), 67–94 | DOI | MR | Zbl

[7] M. G. Pleshakov, P. A. Popov, “Second Jackson inequality in a sign-preserving approximation of periodic functions”, Ukrainian Math. J., 56:1 (2004), 153–160 | DOI | MR | Zbl

[8] A. Zygmund, Trigonometric series, vol. II, Cambridge Univ. Press, New York, 1959 | MR | Zbl | Zbl

[9] M. A. Subkhankulov, Tauberovy teoremy s ostatkom, Nauka, M., 1976 | MR

[10] R. M. Trigub, “Odnostoronnie i komonotonnye priblizheniya algebraicheskimi polinomami s polozhitelnymi koeffitsientami”, Teoriya priblizhenii i ee prilozheniya (Kiev, Ukraina, 1999), In-t matem. NAN Ukr., Kiev, 2000, 461–476 | MR | Zbl

[11] R. M. Trigub, “Priblizhenie periodicheskikh funktsii trigonometricheskimi polinomami s ermitovskoi interpolyatsiei i uchetom polozheniya tochki. Kusochno odnostoronnyaya approksimatsiya”, Dopovidi NAN Ukr., 5 (2006), 19–22 | MR | Zbl

[12] Bl. Sendov, “The constants of H. Whitney are bounded”, C. R. Acad. Bulgare Sci., 38 (1985), 1299–1302 | MR | Zbl

[13] Ph. Hartman, Ordinary differential equations, Wiley, New York–London–Sydney, 1964 | MR | MR | Zbl | Zbl

[14] G. Pólya, G. Szegö, Aufgaben und Lehrsätze aus der Analysis. Zweiter Band. Funktionentheorie, Nullstellen, Polynome, Determinanten, Zahlentheorie, Julius Springer, Berlin, 1925 | MR | MR | Zbl

[15] J. Bergh, J. Löfström, Interpolation spaces. An introduction, Grundlehren der Mathematischen Wissenschaften, 223, Springer-Verlag, Berlin–Heidelberg–New York, 1976 | MR | MR | Zbl