Homology class of a Lagrangian Klein bottle
Izvestiya. Mathematics , Tome 73 (2009) no. 4, pp. 689-698

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that an embedded Lagrangian Klein bottle realises a non-zero mod 2 homology class in a compact symplectic four-manifold $(X,\omega)$ such that $c_1(X,\omega)\cdot[\omega] > 0$.
Keywords: Lagrangian embedding, totally real embedding, Luttinger surgery.
@article{IM2_2009_73_4_a2,
     author = {S. Yu. Nemirovski},
     title = {Homology class of a {Lagrangian} {Klein} bottle},
     journal = {Izvestiya. Mathematics },
     pages = {689--698},
     publisher = {mathdoc},
     volume = {73},
     number = {4},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2009_73_4_a2/}
}
TY  - JOUR
AU  - S. Yu. Nemirovski
TI  - Homology class of a Lagrangian Klein bottle
JO  - Izvestiya. Mathematics 
PY  - 2009
SP  - 689
EP  - 698
VL  - 73
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2009_73_4_a2/
LA  - en
ID  - IM2_2009_73_4_a2
ER  - 
%0 Journal Article
%A S. Yu. Nemirovski
%T Homology class of a Lagrangian Klein bottle
%J Izvestiya. Mathematics 
%D 2009
%P 689-698
%V 73
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2009_73_4_a2/
%G en
%F IM2_2009_73_4_a2
S. Yu. Nemirovski. Homology class of a Lagrangian Klein bottle. Izvestiya. Mathematics , Tome 73 (2009) no. 4, pp. 689-698. http://geodesic.mathdoc.fr/item/IM2_2009_73_4_a2/