Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2009_73_3_a7, author = {A. S. Yudina}, title = {The singularly perturbed {Bessel} equation in complex domains}, journal = {Izvestiya. Mathematics }, pages = {627--653}, publisher = {mathdoc}, volume = {73}, number = {3}, year = {2009}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2009_73_3_a7/} }
A. S. Yudina. The singularly perturbed Bessel equation in complex domains. Izvestiya. Mathematics , Tome 73 (2009) no. 3, pp. 627-653. http://geodesic.mathdoc.fr/item/IM2_2009_73_3_a7/
[1] S. A. Lomov, Introduction to the general theory of singular perturbations, Transl. Math. Monogr., 112, Amer. Math. Soc., Providence, RI, 1992 | MR | MR | Zbl | Zbl
[2] G. N. Watson, A treatise on the theory of Bessel functions, Cambridge Univ. Press, Cambridge; Macmillan, New York, 1944 | MR | Zbl
[3] M. Abramowitz, I. A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, U.S. Government Printing Office, Washington, 1964 | MR | MR | Zbl | Zbl
[4] V. I. Smirnov, A course of higher mathematics. Vol. III. Part two. Complex variables. Special functions, Transl. Math. Monogr., 60, Pergamon Press, Oxford–Edinburgh–New York; Addison-Wesley, Reading–London, 1964 | MR | Zbl
[5] A. S. Yudina, “Asymptotic expansions of cylindrical functions of two real variables”, U.S.S.R. Comput. Math. and Math. Phys., 1:6 (1962), 1277–1283 | DOI | MR | Zbl
[6] P. I. Kuznetsov, A. S. Yudina, “Some properties of the zeros of the cylinder functions of two real variables”, U.S.S.R. Comput. Math. and Math. Phys., 12:3 (1972), 208–218 | DOI | MR | Zbl
[7] P. I. Kuznetsov, A. S. Yudina, “Some asymptotic expansions for an incomplete probability integral”, Theory Probab. Appl., 18 (1973), 355–359 | DOI | MR | Zbl
[8] P. I. Kuznetsov, A. S. Yudina, “Asymptotic expansions of solutions of a confluent hypergeometric equation”, Differential Equations, 23:3 (1987), 300–305 | MR | Zbl | Zbl
[9] A. S. Yudina, “O metode regulyarizatsii dlya uravnenii s regulyarnoi osoboi tochkoi”, Tr. MEI, 357 (1978), 119–121 | MR | Zbl
[10] A. S. Yudina, “Asimptotika resheniya singulyarnogo uravneniya s regulyarnoi osoboi tochkoi”, Tr. MEI, 566 (1982), 82–86 | MR | Zbl
[11] A. S. Yudina, “Regulyarizovannye asimptoticheskie razlozheniya funktsii Besselya”, Tr. MEI, 573 (1982), 106–111 | MR
[12] S. A. Lomov, A. S. Yudina, “The structure of a fundamental system of solutions of a singularly perturbed equation with a regular singular point”, Math. USSR-Izv., 21:2 (1983), 415–424 | DOI | MR | Zbl | Zbl
[13] A. S. Yudina, “Asimptoticheskoe reshenie zadachi Koshi dlya neodnorodnogo uravneniya Besselya s mnimym parametrom”, Sb. nauch. trudov MEI, 141 (1987), 105–109
[14] N. G. de Bruijn, Asymptotic methods in analysis, North-Holland, Amsterdam, 1958 | Zbl | Zbl
[15] A. Erdelyi, Asymptotic expansions, Dover, New York, 1956 | MR | Zbl | Zbl