The singularly perturbed Bessel equation in complex domains
Izvestiya. Mathematics , Tome 73 (2009) no. 3, pp. 627-653.

Voir la notice de l'article provenant de la source Math-Net.Ru

We use the method of regularization to construct two kinds of regularized asymptotic expansions (in a complex parameter) for a fundamental system of solutions of the Bessel equation. Expansions of the first kind are defined in the closed complex plane of the independent variable except for singular points of the spectral functions of the initial operator. We determine the domains of uniform and non-uniform convergence of the series involved. We study the resulting formulae on the positive real axis and prove that they yield Debye's familiar asymptotic expansions for Bessel functions on the interval (0,1), which lies in the domain of non-uniform convergence. The second kind of regularized uniform asymptotic expansions is constructed near a regular singular point in another domain of values of the parameter in the equations. Using these results, we get uniform asymptotic expansions of solutions of a boundary-value problem for the non-homogenous and homogeneous Bessel equations.
Keywords: Bessel equation, regularizing function, regularized asymptotic expansions, Stokes lines.
Mots-clés : Debye's expansion
@article{IM2_2009_73_3_a7,
     author = {A. S. Yudina},
     title = {The singularly perturbed {Bessel} equation in complex domains},
     journal = {Izvestiya. Mathematics },
     pages = {627--653},
     publisher = {mathdoc},
     volume = {73},
     number = {3},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2009_73_3_a7/}
}
TY  - JOUR
AU  - A. S. Yudina
TI  - The singularly perturbed Bessel equation in complex domains
JO  - Izvestiya. Mathematics 
PY  - 2009
SP  - 627
EP  - 653
VL  - 73
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2009_73_3_a7/
LA  - en
ID  - IM2_2009_73_3_a7
ER  - 
%0 Journal Article
%A A. S. Yudina
%T The singularly perturbed Bessel equation in complex domains
%J Izvestiya. Mathematics 
%D 2009
%P 627-653
%V 73
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2009_73_3_a7/
%G en
%F IM2_2009_73_3_a7
A. S. Yudina. The singularly perturbed Bessel equation in complex domains. Izvestiya. Mathematics , Tome 73 (2009) no. 3, pp. 627-653. http://geodesic.mathdoc.fr/item/IM2_2009_73_3_a7/

[1] S. A. Lomov, Introduction to the general theory of singular perturbations, Transl. Math. Monogr., 112, Amer. Math. Soc., Providence, RI, 1992 | MR | MR | Zbl | Zbl

[2] G. N. Watson, A treatise on the theory of Bessel functions, Cambridge Univ. Press, Cambridge; Macmillan, New York, 1944 | MR | Zbl

[3] M. Abramowitz, I. A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, U.S. Government Printing Office, Washington, 1964 | MR | MR | Zbl | Zbl

[4] V. I. Smirnov, A course of higher mathematics. Vol. III. Part two. Complex variables. Special functions, Transl. Math. Monogr., 60, Pergamon Press, Oxford–Edinburgh–New York; Addison-Wesley, Reading–London, 1964 | MR | Zbl

[5] A. S. Yudina, “Asymptotic expansions of cylindrical functions of two real variables”, U.S.S.R. Comput. Math. and Math. Phys., 1:6 (1962), 1277–1283 | DOI | MR | Zbl

[6] P. I. Kuznetsov, A. S. Yudina, “Some properties of the zeros of the cylinder functions of two real variables”, U.S.S.R. Comput. Math. and Math. Phys., 12:3 (1972), 208–218 | DOI | MR | Zbl

[7] P. I. Kuznetsov, A. S. Yudina, “Some asymptotic expansions for an incomplete probability integral”, Theory Probab. Appl., 18 (1973), 355–359 | DOI | MR | Zbl

[8] P. I. Kuznetsov, A. S. Yudina, “Asymptotic expansions of solutions of a confluent hypergeometric equation”, Differential Equations, 23:3 (1987), 300–305 | MR | Zbl | Zbl

[9] A. S. Yudina, “O metode regulyarizatsii dlya uravnenii s regulyarnoi osoboi tochkoi”, Tr. MEI, 357 (1978), 119–121 | MR | Zbl

[10] A. S. Yudina, “Asimptotika resheniya singulyarnogo uravneniya s regulyarnoi osoboi tochkoi”, Tr. MEI, 566 (1982), 82–86 | MR | Zbl

[11] A. S. Yudina, “Regulyarizovannye asimptoticheskie razlozheniya funktsii Besselya”, Tr. MEI, 573 (1982), 106–111 | MR

[12] S. A. Lomov, A. S. Yudina, “The structure of a fundamental system of solutions of a singularly perturbed equation with a regular singular point”, Math. USSR-Izv., 21:2 (1983), 415–424 | DOI | MR | Zbl | Zbl

[13] A. S. Yudina, “Asimptoticheskoe reshenie zadachi Koshi dlya neodnorodnogo uravneniya Besselya s mnimym parametrom”, Sb. nauch. trudov MEI, 141 (1987), 105–109

[14] N. G. de Bruijn, Asymptotic methods in analysis, North-Holland, Amsterdam, 1958 | Zbl | Zbl

[15] A. Erdelyi, Asymptotic expansions, Dover, New York, 1956 | MR | Zbl | Zbl