Densities of topological invariants of quasi-periodic subanalytic sets
Izvestiya. Mathematics , Tome 73 (2009) no. 3, pp. 611-626.

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish the existence of the densities of the Betti numbers and torsions of closed quasi-periodic subanalytic sets. In the course of the proof, we introduce the notion of a uniformly subanalytic set, which is useful when estimating the densities of topological invariants.
Keywords: quasi-periodic topology, quasi-periodic function, ergodic theory.
Mots-clés : transversal volume
@article{IM2_2009_73_3_a6,
     author = {A. I. \`Esterov},
     title = {Densities of topological invariants of quasi-periodic subanalytic sets},
     journal = {Izvestiya. Mathematics },
     pages = {611--626},
     publisher = {mathdoc},
     volume = {73},
     number = {3},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2009_73_3_a6/}
}
TY  - JOUR
AU  - A. I. Èsterov
TI  - Densities of topological invariants of quasi-periodic subanalytic sets
JO  - Izvestiya. Mathematics 
PY  - 2009
SP  - 611
EP  - 626
VL  - 73
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2009_73_3_a6/
LA  - en
ID  - IM2_2009_73_3_a6
ER  - 
%0 Journal Article
%A A. I. Èsterov
%T Densities of topological invariants of quasi-periodic subanalytic sets
%J Izvestiya. Mathematics 
%D 2009
%P 611-626
%V 73
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2009_73_3_a6/
%G en
%F IM2_2009_73_3_a6
A. I. Èsterov. Densities of topological invariants of quasi-periodic subanalytic sets. Izvestiya. Mathematics , Tome 73 (2009) no. 3, pp. 611-626. http://geodesic.mathdoc.fr/item/IM2_2009_73_3_a6/

[1] L. van den Dries, Tame topology and o-minimal structures, London Math. Soc. Lecture Note Ser., 248, Cambridge Univ. Press, Cambridge, 1998 | MR | Zbl

[2] S. M. Gusein-Zade, “Number of critical points for a quasiperiodic potential”, Funct. Anal. Appl., 23:2 (1989), 129–130 | DOI | MR | Zbl

[3] S. M. Gusein-Zade, “On the topology of quasiperiodic functions”, Pseudoperiodic topology, Amer. Math. Soc. Transl. Ser. 2, 197, Amer. Math. Soc., Providence, RI, 1999, 1–7 | MR | Zbl

[4] A. I. Esterov, “Densities of the Betti numbers of pre-level sets of quasi-periodic functions”, Russian Math. Surveys, 55:2 (2000), 338–339 | DOI | MR | Zbl

[5] E. Soprunova, “Zeros of systems of exponential sums and trigonometric polynomials”, Mosc. Math. J., 6:1 (2006), 153–168 | MR | Zbl