Asymptotic behaviour of the positive spectrum of a~family of~periodic Sturm--Liouville problems
Izvestiya. Mathematics , Tome 73 (2009) no. 3, pp. 579-610.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of the spectrum of a parameter-dependent family of periodic Sturm–Liouville problems for the equation $u''+\lambda^2(g(x)-a)u=0$, where $a\in\mathbb R$ is the parameter of the family and $\lambda$ is the spectral parameter. It is assumed that $g\colon\mathbb R\to\mathbb R$ is a sufficiently smooth $2\pi$-periodic function with one simple maximum $g(x_{\max})= a_1>0$ and one simple minimum $g(x_{\min})=a_2>0$ over a period, and that the functions $g(x-x_{\min})$ and $g(x-x_{\max})$ are even. Under these assumptions, the first two asymptotic terms are calculated explicitly for the positive eigenvalues on the whole interval $0\le a$, including the neighbourhoods of the points $a=a_1$ and $a=a_2$. For $\lambda\gg1$, it is shown that the spectrum consists of two branches $\lambda=\lambda_{\pm}(a,p)$, indexed by the signs $\pm$ and by an integer $p\in\mathbb Z^+$, $p\gg1$. A unified interpolation formula is derived to describe the asymptotic behaviour of the spectrum branches in the passage from the definite (classical) problem with $a$ to the indefinite problem with $a>a_2$.
Keywords: definite and indefinite Sturm–Liouville problems, asymptotic behaviour of the spectrum, turning points.
@article{IM2_2009_73_3_a5,
     author = {D. A. Popov},
     title = {Asymptotic behaviour of the positive spectrum of a~family of~periodic {Sturm--Liouville} problems},
     journal = {Izvestiya. Mathematics },
     pages = {579--610},
     publisher = {mathdoc},
     volume = {73},
     number = {3},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2009_73_3_a5/}
}
TY  - JOUR
AU  - D. A. Popov
TI  - Asymptotic behaviour of the positive spectrum of a~family of~periodic Sturm--Liouville problems
JO  - Izvestiya. Mathematics 
PY  - 2009
SP  - 579
EP  - 610
VL  - 73
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2009_73_3_a5/
LA  - en
ID  - IM2_2009_73_3_a5
ER  - 
%0 Journal Article
%A D. A. Popov
%T Asymptotic behaviour of the positive spectrum of a~family of~periodic Sturm--Liouville problems
%J Izvestiya. Mathematics 
%D 2009
%P 579-610
%V 73
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2009_73_3_a5/
%G en
%F IM2_2009_73_3_a5
D. A. Popov. Asymptotic behaviour of the positive spectrum of a~family of~periodic Sturm--Liouville problems. Izvestiya. Mathematics , Tome 73 (2009) no. 3, pp. 579-610. http://geodesic.mathdoc.fr/item/IM2_2009_73_3_a5/

[1] F. W. J. Olver, Asymptotics and special functions, Computer Science and Applied Mathematics, Academic Press, New York–London, 1974 | MR | MR | Zbl | Zbl

[2] M. V. Fedoryuk, Asimptoticheskie metody dlya lineinykh obyknovennykh differentsialnykh uravnenii, Nauka, M., 1983 | MR | Zbl

[3] E. A. Coddington, N. Levinson, Theory of ordinary differential equations, McGraw-Hill, New York–Toronto–London, 1955 | MR | Zbl

[4] B. M. Levitan, I. S. Sargsjan, Introduction to spectral theory: selfadjoint ordinary differential operators, Translations of Mathematical Monographs, 39, Amer. Math. Soc., Providence, RI, 1975 | MR | MR | Zbl | Zbl

[5] B. M. Levitan, I. S. Sargsjan, Sturm–Liouville and Dirac operators, Math. Appl. (Soviet Ser.), 59, Kluwer Acad. Publ., Dordrecht, 1991 | MR | MR | Zbl | Zbl

[6] A. B. Mingarelli, “Indefinite Sturm–Liouville problems”, Ordinary and partial differential equations (Dundee, 1982), Lecture Notes in Math., 964, Springer-Verlag, Berlin–New York, 1982, 519–528 | DOI | MR | Zbl

[7] A. B. Mingarelli, “Asymptotic distribution of the eigenvalues of non-definite Sturm–Liouville problems”, Ordinary differential equations and operators (Dundee, 1982), Lecture Notes in Math., 1032, Springer-Verlag, Berlin, 1983, 375–383 | DOI | MR | Zbl

[8] F. W. Atkinson, A. B. Mingarelli, “Asymptotic of the number of zeros and of eigenvalues of general weighted Sturm–Liouville problems”, J. Reine Angew. Math., 375/376 (1987), 380–393 | MR | Zbl

[9] P. A. Binding, H. Volkmer, “Oscillation theory for Sturm–Liouville problems with indefinite coefficients”, Proc. Roy. Soc. Edinburgh Sect. A, 131:5 (2001), 989–1002 | DOI | MR | Zbl

[10] T. Ya. Azizov, I. S. Iokhvidov, “Linear operators in spaces with indefinite metric and their applications”, J. Soviet Math., 15:4 (1981), 438–490 | DOI | MR | Zbl

[11] K. Daho, H. Langer, “Sturm–Liouville operators with an indefinite weight function”, Proc. Roy. Soc. Edinburgh Sect. A, 78:1–2 (1977), 161–191 | MR | Zbl

[12] B. Ćurgus, H. Langer, “A Krein space approach to symmetric ordinary differential operators with an indefinite weight function”, J. Differential Equations, 79:1 (1989), 31–61 | DOI | MR | Zbl

[13] S. G. Pyatkov, “Indefinite elliptic spectral problems”, Siberian Math. J., 39:2 (1998), 358–372 | DOI | MR | Zbl

[14] A. V. D'yachenko, “Asymptotic formulas for eigenvalues of the indefinite Sturm–Liouville problem with finite number of turn points”, Moscow Univ. Math. Bull., 56:5 (2001), 1–9 | MR | Zbl

[15] P. M. Bleher, “Quasi-classical expantions and the problem of quantum chaos”, Geometric aspects of functional analysis, Lecture Notes in Math., 1469, Springer-Verlag, Berlin, 1991, 60–89 | DOI | MR | Zbl

[16] D. V. Kosygin, A. A. Minasov, Ya. G. Sinai, “Statistical properties of the spectra of Laplace–Beltrami operators on Liouville surfaces”, Russian Math. Surveys, 48:4 (1993), 1–142 | DOI | MR | Zbl

[17] F. W. J. Olver, “Second-order linear differential equations with two turning points”, Philos. Trans. Roy. Soc. London Ser. A, 278:1279 (1979), 137–174 | DOI | MR | Zbl

[18] M. V. Fedoryuk, “Asimptotika diskretnogo spektra operatora $w"(x)-\lambda^2p(x)w(x)$”, Matem. sb., 68(110):1 (1965), 81–110 | MR | Zbl

[19] S. Yu. Dobrokhotov, A. I. Shafarevich, “Tunnel splitting of the spectrum of the Beltrami–Laplace operators on two-dimensional surfaces with square integrable geodesic flow”, Funct. Anal. Appl., 34:2 (2000), 133–134 | DOI | MR | Zbl

[20] Ya. G. Sinai, “Mathematical problems in the theory of quantum chaos”, Geometric aspects of functional analysis (1989–90), Lecture Notes in Math., 1469, Springer-Verlag, Berlin, 1991, 41–59 | DOI | MR | Zbl

[21] P. M. Bleher, D. W. Kosygin, Ya. G. Sinai, “Distribution of energy levels of quantum free particle on the Liouville surface and trace formulae”, Comm. Math. Phys., 170:2 (1995), 375–403 | DOI | MR | Zbl

[22] A. Erdélyi, W. Magnus, F. Oberhettinger, G. Francesco, Higher transcendental functions, vol. I, McGraw-Hill, New York–Toronto–London, 1953 | MR | MR | Zbl | Zbl

[23] M. Abramowitz, I. A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series, 55, U.S. Government Printing Office, Washington, DC, 1964 | MR | MR | Zbl | Zbl

[24] F. W. J. Olver, “Uniform asymptotic expansions for Weber parabolic cylinder functions of large orders”, J. Res. Nat. Bur. Standards Sect. B, 63 (1959), 131–169 | MR | Zbl

[25] J. C. P. Miller, Tables of Weber parabolic cylinder functions, giving solutions of the differential equation $\frac{d^2y}{dx^2}+(\frac 14 x^2-a)y=0$, Her Majesty's Stationery Office, London, 1955 | MR | MR | Zbl

[26] A. Erdélyi, W. Magnus, F. Oberhettinger, G. Francesco, Higher transcendental functions, vol. II, McGraw-Hill, New York–Toronto–London, 1953 | MR | MR | Zbl | Zbl