Asymptotic behaviour of the positive spectrum of a~family of~periodic Sturm--Liouville problems
Izvestiya. Mathematics , Tome 73 (2009) no. 3, pp. 579-610

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of the spectrum of a parameter-dependent family of periodic Sturm–Liouville problems for the equation $u''+\lambda^2(g(x)-a)u=0$, where $a\in\mathbb R$ is the parameter of the family and $\lambda$ is the spectral parameter. It is assumed that $g\colon\mathbb R\to\mathbb R$ is a sufficiently smooth $2\pi$-periodic function with one simple maximum $g(x_{\max})= a_1>0$ and one simple minimum $g(x_{\min})=a_2>0$ over a period, and that the functions $g(x-x_{\min})$ and $g(x-x_{\max})$ are even. Under these assumptions, the first two asymptotic terms are calculated explicitly for the positive eigenvalues on the whole interval $0\le a$, including the neighbourhoods of the points $a=a_1$ and $a=a_2$. For $\lambda\gg1$, it is shown that the spectrum consists of two branches $\lambda=\lambda_{\pm}(a,p)$, indexed by the signs $\pm$ and by an integer $p\in\mathbb Z^+$, $p\gg1$. A unified interpolation formula is derived to describe the asymptotic behaviour of the spectrum branches in the passage from the definite (classical) problem with $a$ to the indefinite problem with $a>a_2$.
Keywords: definite and indefinite Sturm–Liouville problems, asymptotic behaviour of the spectrum, turning points.
@article{IM2_2009_73_3_a5,
     author = {D. A. Popov},
     title = {Asymptotic behaviour of the positive spectrum of a~family of~periodic {Sturm--Liouville} problems},
     journal = {Izvestiya. Mathematics },
     pages = {579--610},
     publisher = {mathdoc},
     volume = {73},
     number = {3},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2009_73_3_a5/}
}
TY  - JOUR
AU  - D. A. Popov
TI  - Asymptotic behaviour of the positive spectrum of a~family of~periodic Sturm--Liouville problems
JO  - Izvestiya. Mathematics 
PY  - 2009
SP  - 579
EP  - 610
VL  - 73
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2009_73_3_a5/
LA  - en
ID  - IM2_2009_73_3_a5
ER  - 
%0 Journal Article
%A D. A. Popov
%T Asymptotic behaviour of the positive spectrum of a~family of~periodic Sturm--Liouville problems
%J Izvestiya. Mathematics 
%D 2009
%P 579-610
%V 73
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2009_73_3_a5/
%G en
%F IM2_2009_73_3_a5
D. A. Popov. Asymptotic behaviour of the positive spectrum of a~family of~periodic Sturm--Liouville problems. Izvestiya. Mathematics , Tome 73 (2009) no. 3, pp. 579-610. http://geodesic.mathdoc.fr/item/IM2_2009_73_3_a5/