A sharp constant in a Sobolev--Nirenberg inequality and its application to the Schr\"odinger equation
Izvestiya. Mathematics , Tome 73 (2009) no. 3, pp. 555-577

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the solution of the Cauchy problem for a non-linear Schrödinger evolution equation with critical and supercritical exponents can blow up at a finite time for some initial data, and this time is estimated from above and below. To this end, an interpolation Nirenberg-type inequality and a Sobolev-type inequality are proved and the values of sharp constants in these inequalities are calculated.
Keywords: Nirenberg–Sobolev inequality, non-linear Schrödinger equation, blow-up, global solubility.
Mots-clés : sharp constant
@article{IM2_2009_73_3_a4,
     author = {Sh. M. Nasibov},
     title = {A sharp constant in a {Sobolev--Nirenberg} inequality and its application to the {Schr\"odinger} equation},
     journal = {Izvestiya. Mathematics },
     pages = {555--577},
     publisher = {mathdoc},
     volume = {73},
     number = {3},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2009_73_3_a4/}
}
TY  - JOUR
AU  - Sh. M. Nasibov
TI  - A sharp constant in a Sobolev--Nirenberg inequality and its application to the Schr\"odinger equation
JO  - Izvestiya. Mathematics 
PY  - 2009
SP  - 555
EP  - 577
VL  - 73
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2009_73_3_a4/
LA  - en
ID  - IM2_2009_73_3_a4
ER  - 
%0 Journal Article
%A Sh. M. Nasibov
%T A sharp constant in a Sobolev--Nirenberg inequality and its application to the Schr\"odinger equation
%J Izvestiya. Mathematics 
%D 2009
%P 555-577
%V 73
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2009_73_3_a4/
%G en
%F IM2_2009_73_3_a4
Sh. M. Nasibov. A sharp constant in a Sobolev--Nirenberg inequality and its application to the Schr\"odinger equation. Izvestiya. Mathematics , Tome 73 (2009) no. 3, pp. 555-577. http://geodesic.mathdoc.fr/item/IM2_2009_73_3_a4/