A sharp constant in a Sobolev--Nirenberg inequality and its application to the Schr\"odinger equation
Izvestiya. Mathematics , Tome 73 (2009) no. 3, pp. 555-577.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the solution of the Cauchy problem for a non-linear Schrödinger evolution equation with critical and supercritical exponents can blow up at a finite time for some initial data, and this time is estimated from above and below. To this end, an interpolation Nirenberg-type inequality and a Sobolev-type inequality are proved and the values of sharp constants in these inequalities are calculated.
Keywords: Nirenberg–Sobolev inequality, non-linear Schrödinger equation, blow-up, global solubility.
Mots-clés : sharp constant
@article{IM2_2009_73_3_a4,
     author = {Sh. M. Nasibov},
     title = {A sharp constant in a {Sobolev--Nirenberg} inequality and its application to the {Schr\"odinger} equation},
     journal = {Izvestiya. Mathematics },
     pages = {555--577},
     publisher = {mathdoc},
     volume = {73},
     number = {3},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2009_73_3_a4/}
}
TY  - JOUR
AU  - Sh. M. Nasibov
TI  - A sharp constant in a Sobolev--Nirenberg inequality and its application to the Schr\"odinger equation
JO  - Izvestiya. Mathematics 
PY  - 2009
SP  - 555
EP  - 577
VL  - 73
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2009_73_3_a4/
LA  - en
ID  - IM2_2009_73_3_a4
ER  - 
%0 Journal Article
%A Sh. M. Nasibov
%T A sharp constant in a Sobolev--Nirenberg inequality and its application to the Schr\"odinger equation
%J Izvestiya. Mathematics 
%D 2009
%P 555-577
%V 73
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2009_73_3_a4/
%G en
%F IM2_2009_73_3_a4
Sh. M. Nasibov. A sharp constant in a Sobolev--Nirenberg inequality and its application to the Schr\"odinger equation. Izvestiya. Mathematics , Tome 73 (2009) no. 3, pp. 555-577. http://geodesic.mathdoc.fr/item/IM2_2009_73_3_a4/

[1] V. E. Zakharov, A. B. Shabat, “Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media”, Soviet Physics JETP, 34:1 (1972), 62–69 | MR

[2] V. I. Lugovoi, A. M. Prokhorov, “Teoriya rasprostraneniya moschnogo lazernogo izlucheniya v nelineinoi srede”, UFN, 111:10 (1973), 203–247 ; http://ufn.ru/ru/articles/1973/10/a/

[3] Sh. M. Nasibov, “Nonlinear Schrödinger-type equation”, Differential Equations, 16:4 (1980), 412–420 | MR | Zbl | Zbl

[4] Sh. M. Nasibov, “On optimal constants in some Sobolev inequalities and their application to a nonlinear Schrödinger equation”, Soviet Math. Dokl., 40:1 (1990), 110–115 | MR | Zbl

[5] O. I. Kudryashov, “Singular solutions of nonlinear equations of Ginsburg–Landau type”, Siberian Math. J., 16:4 (1975), 665–667 | DOI | MR | Zbl | Zbl

[6] A. B. Shabat, “O zadache Koshi dlya uravneniya Ginzburga–Landau”, Dinamika sploshnoi sredy, vyp. 1, Novosibirsk, 1969, 180–194

[7] Sh. M. Nasibov, “On stability, collapse, decay, and self-trapping of solutions of a nonlinear Schrödinger equation”, Soviet Math. Dokl., 32:3 (1985), 784–788 | MR | Zbl

[8] H. Nawa, “Asymptotic and limiting profiles of blowup solutions of the nonlinear Schrödinger equation with critical power”, Comm. Pure Appl. Math., 52:2 (1999), 193–270 | 3.0.CO;2-3 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[9] Th. Cazenave, “Equations de Schrödinger non linéaires en dimension deux”, Proc. Roy. Soc. Edinburgh Sect. A, 84:3–4 (1979), 327–346 | MR | Zbl

[10] Th. Cazenave, F. B. Weissler, “The structure of solutions to the pseudo-conformally invariant nonlinear Schrödinger equation”, Proc. Roy. Soc. Edinburgh Sect. A, 117:3–4 (1991), 251–273 | MR | Zbl

[11] R. T. Classey, “On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations”, J. Math. Phys., 18:9 (1977), 1794–1797 | DOI | MR

[12] S. N. Vlasov, V. A. Petrischev, V. I. Talanov, “Usrednennoe opisanie volnovykh puchkov v lineinykh sredakh i v nelineinykh sredakh (metod momentov)”, Izv. vuzov. Radiofizika, 14:9 (1971), 1353–1363

[13] V. E. Zakharov, “Kollaps lengmyurovskikh voln”, ZhETF, 62:5 (1972), 1745–1759

[14] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, de Gruyter, Paris, 1969 | MR | MR | Zbl | Zbl

[15] M. V. Vladimirov, “Solvability of a mixed problem for the nonlinear Schrödinger equation”, Math. USSR-Sb., 58:2 (1987), 525–540 | DOI | MR | Zbl

[16] J.-B. Baillon, Th. Cazenave, M. Figueira, “Equation de Schrödinger non linéaire”, C. R. Acad. Sci. Paris Sér. A-B, 284:15 (1977), 869–872 | MR | Zbl

[17] I. Segal, “Non-linear semi-groups”, Ann. of Math. (2), 78:2 (1963), 339–364 | DOI | MR | Zbl

[18] J. Ginibre, G. Velo, “On a class of nonlinear Schrödinger equations. I, II”, J. Funct. Anal., 32:1 (1979), 1–71 | DOI | DOI | MR | MR | Zbl

[19] T. Kato, “On nonlinear Schrödinger equations”, Ann. Inst. H. Poincaré Phys. Théor., 46:1 (1978), 113–129 | MR

[20] V. S. Vladimirov, Equations of mathematical physics, Dekker, New York, 1971 | MR | MR | Zbl | Zbl

[21] I. S. Gradshteyn, I. M. Ryzhik, Table of integrals, series, and products, Academic Press, New York–London–Toronto, ON, 1980 | MR | MR | Zbl | Zbl

[22] S. M. Nikol'skiĭ, Approximation of functions of several variables and imbedding theorems, Grundlehren Math. Wiss., 205, Springer-Verlag, New York–Heidelberg, 1975 | MR | MR | Zbl | Zbl

[23] M. K. Kwong, “Uniqueness of positive solutions of $\Delta u-u+u^p=0$ in $\mathbb{R}^n$”, Arch. Rational Mech. Anal., 105:3 (1989), 243–266 | DOI | MR | Zbl

[24] K. McLeod, J. Serrin, “Uniqueness of solutions of semilinear Poisson equations”, Proc. Nat. Acad. Sci. U.S.A., 78:11 (1981), 6592–6595 | DOI | MR | Zbl

[25] M. I. Weinstein, “Nonlinear Schrödinger equations and sharp interpolation estimates”, Comm. Math. Phys., 87:4 (1983), 567–576 | DOI | MR | Zbl

[26] H. A. Levine, “An estimate for the best constant in a Sobolev inequality involving three integral norms”, Ann. Mat. Pura Appl. (4), 124:1 (1980), 181–197 | DOI | MR | Zbl

[27] E. H. Lieb, “Sharp constants in the Hardy–Littlewood–Sobolev and related inequalities”, Ann. of Math. (2), 118:2 (1983), 349–374 | DOI | MR | Zbl

[28] B. v. Sz. Nagy, “Über Integralungleichungen zwischen einer Funktion und ihrer Ableitung”, Acta Univ. Szeged. Sect. Sci. Math., 10 (1941), 64–74 | MR | Zbl

[29] E. J. M. Veling, “Lower bounds for the infimum of the spectrum of the Schrödinger operator in $\mathbb R^N$ and the Sobolev inequalities”, JIPAM. J. Inequal. Pure Appl. Math., 3:4 (2002), article 63 | MR | Zbl

[30] G. Talenti, “Best constant in Sobolev inequality”, Ann. Mat. Pura Appl. (4), 110:1 (1976), 353–372 | DOI | MR | Zbl

[31] M. Del Pino, J. Dolbeault, “Best constants for Gagliardo–Nirenberg inequalities and applications to nonlinear diffusions”, J. Math. Pures Appl. (9), 81:9 (2002), 847–875 | DOI | MR | Zbl

[32] Yu. A. Dubinskii, “Quasilinear elliptic and parabolic equations of arbitrary order”, Russian Math. Surveys, 23:1 (1968), 45–91 | DOI | MR | Zbl | Zbl

[33] Sh. M. Nasibov, “An exact constant in one Sobolev–Nirenberg inequality and its application to estimation from below of the blowup time for the nonlinear Schrödinger equation with a critical degree”, Dokl. Math., 65:1 (2002), 135–138 | MR | Zbl

[34] C. Sulem, P.-L. Sulem, The nonlinear Schrödinger equation. Self-focusing and wave collapse, Appl. Math. Sci., 139, Springer-Verlag, New York, 1999 | MR | Zbl

[35] G. M. Fraǐman, “Asymptotic stability of manifold of self-similar solutions in self-focusing”, Soviet Phys. JETP, 61:2 (1985), 228–233 | MR

[36] H. Brezis, T. Gallouet, “Nonlinear Schrödinger evolution equations”, Nonlinear Anal., 4:4 (1980), 677–681 | DOI | MR | Zbl

[37] S. K. Turitsyn, “Nonstable solitons and sharp criteria for wave collapse”, Phys. Rev. E (3), 47:1 (1993), R13–R16 | DOI | MR

[38] E. A. Kuznetsov, J. J. Rasmussen, K. Rypdal, S. K. Turitsyn, “Sharper criteria for the wave collapse”, Phys. D, 87:1–4 (1995), 273–284 | DOI | MR

[39] P. M. Lushnikov, “Dynamic criterion for collapse”, JETP Lett., 62 (1995), 461–467