Projective embeddings of homogeneous spaces with small boundary
Izvestiya. Mathematics , Tome 73 (2009) no. 3, pp. 437-453.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study open equivariant projective embeddings of homogeneous spaces such that the complement of the open orbit has codimension at least 2. We establish a criterion for the existence of such an embedding, prove that the set of isomorphism classes of such embeddings is finite, and give a construction of the embeddings in terms of Geometric Invariant Theory. A generalization of Cox's construction and the theory of bunched rings enable us to describe in combinatorial terms the basic geometric properties of embeddings with small boundary.
Keywords: homogeneous space, epimorphic subgroup, Cox ring.
Mots-clés : algebraic group
@article{IM2_2009_73_3_a1,
     author = {I. V. Arzhantsev},
     title = {Projective embeddings of homogeneous spaces with small boundary},
     journal = {Izvestiya. Mathematics },
     pages = {437--453},
     publisher = {mathdoc},
     volume = {73},
     number = {3},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2009_73_3_a1/}
}
TY  - JOUR
AU  - I. V. Arzhantsev
TI  - Projective embeddings of homogeneous spaces with small boundary
JO  - Izvestiya. Mathematics 
PY  - 2009
SP  - 437
EP  - 453
VL  - 73
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2009_73_3_a1/
LA  - en
ID  - IM2_2009_73_3_a1
ER  - 
%0 Journal Article
%A I. V. Arzhantsev
%T Projective embeddings of homogeneous spaces with small boundary
%J Izvestiya. Mathematics 
%D 2009
%P 437-453
%V 73
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2009_73_3_a1/
%G en
%F IM2_2009_73_3_a1
I. V. Arzhantsev. Projective embeddings of homogeneous spaces with small boundary. Izvestiya. Mathematics , Tome 73 (2009) no. 3, pp. 437-453. http://geodesic.mathdoc.fr/item/IM2_2009_73_3_a1/

[1] D. Luna, Th. Vust, “Plongements d'espaces homogènes”, Comment. Math. Helv., 58:1 (1983), 186–245 | DOI | MR | Zbl

[2] I. V. Arzhantsev, “Affine embeddings of homogeneous spaces”, Surveys in geometry and number theory: reports on contemporary Russian mathematics, London Math. Soc. Lecture Note Ser., 338, Cambridge Univ. Press, Cambridge, 2007, 5–55 | MR | Zbl

[3] F. Bien, A. Borel, “Sous-groupes épimorphiques de groupes linéaires algébriques. II”, C. R. Acad. Sci. Paris Sér. I Math., 315:13 (1992), 1341–1346 | MR | Zbl

[4] F. Bien, A. Borel, J. Kollár, “Rationally connected homogeneous spaces”, Invent. Math., 124:1–3 (1996), 103–127 | DOI | MR | Zbl

[5] F. D. Grosshans, Algebraic homogeneous spaces and invariant theory, Lecture Notes in Math., 1673, Springer-Verlag, Berlin, 1997 | DOI | MR | Zbl

[6] I. V. Arzhantsev, J. Hausen, “On embeddings of homogeneous spaces with small boundary”, J. Algebra, 304:2 (2006), 950–988 | DOI | MR | Zbl

[7] F. Bien, “Orbits, multiplicities and differential operators”, Representation theory of groups and algebras, Contemp. Math., 145, Amer. Math. Soc., Providence, RI, 1993, 199–227 | MR | Zbl

[8] F. Bien, A. Borel, “Sous-groupes épimorphiques de groupes linéaires algébriques. I”, C. R. Acad. Sci. Paris Sér. I Math., 315:6 (1992), 649–653 | MR | Zbl

[9] F. Berchtold, J. Hausen, “Cox rings and combinatorics”, Trans. Amer. Math. Soc., 359:3 (2007), 1205–1252 | DOI | MR | Zbl

[10] Y. Hu, S. Keel, “Mori dream spaces and GIT”, Michigan Math. J., 48:1 (2000), 331–348 | DOI | MR | Zbl

[11] V. L. Popov, E. B. Vinberg, “Invariant theory”, Algebraic geometry. IV. Linear algebraic groups, invariant theory, Encyclopaedia Math. Sci., 55, Springer-Verlag, Berlin, 1994, 123–278 | MR | MR | Zbl | Zbl

[12] K. Trautman, “Orbits that always have affine stable neighbourhoods”, Adv. Math., 91:1 (1992), 54–63 | DOI | MR | Zbl

[13] R. Steinberg, “Nagata's example”, Algebraic groups and Lie groups, Austral. Math. Soc. Lect. Ser., 9, Cambridge Univ. Press, Cambridge, 1997, 375–384 | MR | Zbl

[14] V. L. Popov, “Picard groups of homogeneous spaces of linear algebraic groups and one-dimensional homogeneous vector bundles”, Math. USSR-Izv., 8:2 (1974), 301–327 | DOI | MR | Zbl | Zbl

[15] F. Berchtold, J. Hausen, “GIT-equivalence beyond the ample cone”, Michigan Math. J., 54:3 (2006), 483–516 | DOI | MR | Zbl

[16] I. V. Arzhantsev, J. Hausen, “On the multiplication map of a multigraded algebra”, Math. Res. Lett., 14:1 (2007), 129–136 | MR | Zbl

[17] F. Knop, H. Kraft, D. Luna, Th. Vust, “Local properties of algebraic group actions”, Algebraische Transformationsgruppen und Invariantentheorie, DMV Sem., 13, Birkhäuser, Basel, 1989, 63–75 | MR | Zbl

[18] F. Berchtold, J. Hausen, “Homogeneous coordinates for algebraic varieties”, J. Algebra, 266:2 (2003), 636–670 | DOI | MR | Zbl

[19] E. J. Elizondo, K. Kurano, K. K. Watanabe, “The total coordinate ring of a normal projective variety”, J. Algebra, 276:2 (2004), 625–637 | DOI | MR | Zbl

[20] B. Kostant, “Lie group representations on polynomial rings”, Amer. J. Math., 85:3 (1963), 327–404 | DOI | MR | Zbl

[21] I. V. Arzhantsev, “Algebras with finitely generated invariant subalgebras”, Ann. Inst. Fourier (Grenoble), 53:2 (2003), 379–398 | MR | Zbl

[22] I. V. Arzhantsev, D. A. Timashev, “On the canonical embeddings of certain homogeneous spaces”, Lie groups and invariant theory, Amer. Math. Soc. Transl. Ser. 2, 213, Amer. Math. Soc., Providence, RI, 2005, 63–83 | MR | Zbl