Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2009_73_3_a1, author = {I. V. Arzhantsev}, title = {Projective embeddings of homogeneous spaces with small boundary}, journal = {Izvestiya. Mathematics }, pages = {437--453}, publisher = {mathdoc}, volume = {73}, number = {3}, year = {2009}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2009_73_3_a1/} }
I. V. Arzhantsev. Projective embeddings of homogeneous spaces with small boundary. Izvestiya. Mathematics , Tome 73 (2009) no. 3, pp. 437-453. http://geodesic.mathdoc.fr/item/IM2_2009_73_3_a1/
[1] D. Luna, Th. Vust, “Plongements d'espaces homogènes”, Comment. Math. Helv., 58:1 (1983), 186–245 | DOI | MR | Zbl
[2] I. V. Arzhantsev, “Affine embeddings of homogeneous spaces”, Surveys in geometry and number theory: reports on contemporary Russian mathematics, London Math. Soc. Lecture Note Ser., 338, Cambridge Univ. Press, Cambridge, 2007, 5–55 | MR | Zbl
[3] F. Bien, A. Borel, “Sous-groupes épimorphiques de groupes linéaires algébriques. II”, C. R. Acad. Sci. Paris Sér. I Math., 315:13 (1992), 1341–1346 | MR | Zbl
[4] F. Bien, A. Borel, J. Kollár, “Rationally connected homogeneous spaces”, Invent. Math., 124:1–3 (1996), 103–127 | DOI | MR | Zbl
[5] F. D. Grosshans, Algebraic homogeneous spaces and invariant theory, Lecture Notes in Math., 1673, Springer-Verlag, Berlin, 1997 | DOI | MR | Zbl
[6] I. V. Arzhantsev, J. Hausen, “On embeddings of homogeneous spaces with small boundary”, J. Algebra, 304:2 (2006), 950–988 | DOI | MR | Zbl
[7] F. Bien, “Orbits, multiplicities and differential operators”, Representation theory of groups and algebras, Contemp. Math., 145, Amer. Math. Soc., Providence, RI, 1993, 199–227 | MR | Zbl
[8] F. Bien, A. Borel, “Sous-groupes épimorphiques de groupes linéaires algébriques. I”, C. R. Acad. Sci. Paris Sér. I Math., 315:6 (1992), 649–653 | MR | Zbl
[9] F. Berchtold, J. Hausen, “Cox rings and combinatorics”, Trans. Amer. Math. Soc., 359:3 (2007), 1205–1252 | DOI | MR | Zbl
[10] Y. Hu, S. Keel, “Mori dream spaces and GIT”, Michigan Math. J., 48:1 (2000), 331–348 | DOI | MR | Zbl
[11] V. L. Popov, E. B. Vinberg, “Invariant theory”, Algebraic geometry. IV. Linear algebraic groups, invariant theory, Encyclopaedia Math. Sci., 55, Springer-Verlag, Berlin, 1994, 123–278 | MR | MR | Zbl | Zbl
[12] K. Trautman, “Orbits that always have affine stable neighbourhoods”, Adv. Math., 91:1 (1992), 54–63 | DOI | MR | Zbl
[13] R. Steinberg, “Nagata's example”, Algebraic groups and Lie groups, Austral. Math. Soc. Lect. Ser., 9, Cambridge Univ. Press, Cambridge, 1997, 375–384 | MR | Zbl
[14] V. L. Popov, “Picard groups of homogeneous spaces of linear algebraic groups and one-dimensional homogeneous vector bundles”, Math. USSR-Izv., 8:2 (1974), 301–327 | DOI | MR | Zbl | Zbl
[15] F. Berchtold, J. Hausen, “GIT-equivalence beyond the ample cone”, Michigan Math. J., 54:3 (2006), 483–516 | DOI | MR | Zbl
[16] I. V. Arzhantsev, J. Hausen, “On the multiplication map of a multigraded algebra”, Math. Res. Lett., 14:1 (2007), 129–136 | MR | Zbl
[17] F. Knop, H. Kraft, D. Luna, Th. Vust, “Local properties of algebraic group actions”, Algebraische Transformationsgruppen und Invariantentheorie, DMV Sem., 13, Birkhäuser, Basel, 1989, 63–75 | MR | Zbl
[18] F. Berchtold, J. Hausen, “Homogeneous coordinates for algebraic varieties”, J. Algebra, 266:2 (2003), 636–670 | DOI | MR | Zbl
[19] E. J. Elizondo, K. Kurano, K. K. Watanabe, “The total coordinate ring of a normal projective variety”, J. Algebra, 276:2 (2004), 625–637 | DOI | MR | Zbl
[20] B. Kostant, “Lie group representations on polynomial rings”, Amer. J. Math., 85:3 (1963), 327–404 | DOI | MR | Zbl
[21] I. V. Arzhantsev, “Algebras with finitely generated invariant subalgebras”, Ann. Inst. Fourier (Grenoble), 53:2 (2003), 379–398 | MR | Zbl
[22] I. V. Arzhantsev, D. A. Timashev, “On the canonical embeddings of certain homogeneous spaces”, Lie groups and invariant theory, Amer. Math. Soc. Transl. Ser. 2, 213, Amer. Math. Soc., Providence, RI, 2005, 63–83 | MR | Zbl