Projective embeddings of homogeneous spaces with small boundary
Izvestiya. Mathematics , Tome 73 (2009) no. 3, pp. 437-453

Voir la notice de l'article provenant de la source Math-Net.Ru

We study open equivariant projective embeddings of homogeneous spaces such that the complement of the open orbit has codimension at least 2. We establish a criterion for the existence of such an embedding, prove that the set of isomorphism classes of such embeddings is finite, and give a construction of the embeddings in terms of Geometric Invariant Theory. A generalization of Cox's construction and the theory of bunched rings enable us to describe in combinatorial terms the basic geometric properties of embeddings with small boundary.
Keywords: homogeneous space, epimorphic subgroup, Cox ring.
Mots-clés : algebraic group
@article{IM2_2009_73_3_a1,
     author = {I. V. Arzhantsev},
     title = {Projective embeddings of homogeneous spaces with small boundary},
     journal = {Izvestiya. Mathematics },
     pages = {437--453},
     publisher = {mathdoc},
     volume = {73},
     number = {3},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2009_73_3_a1/}
}
TY  - JOUR
AU  - I. V. Arzhantsev
TI  - Projective embeddings of homogeneous spaces with small boundary
JO  - Izvestiya. Mathematics 
PY  - 2009
SP  - 437
EP  - 453
VL  - 73
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2009_73_3_a1/
LA  - en
ID  - IM2_2009_73_3_a1
ER  - 
%0 Journal Article
%A I. V. Arzhantsev
%T Projective embeddings of homogeneous spaces with small boundary
%J Izvestiya. Mathematics 
%D 2009
%P 437-453
%V 73
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2009_73_3_a1/
%G en
%F IM2_2009_73_3_a1
I. V. Arzhantsev. Projective embeddings of homogeneous spaces with small boundary. Izvestiya. Mathematics , Tome 73 (2009) no. 3, pp. 437-453. http://geodesic.mathdoc.fr/item/IM2_2009_73_3_a1/