Approximation by simple partial fractions and the Hilbert transform
Izvestiya. Mathematics , Tome 73 (2009) no. 2, pp. 333-349

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the problem of approximation of functions in $L_p$ by simple partial fractions on the real axis and semi-axis. A simple partial fraction is a rational function of the form $g(t)=\sum_{k=1}^n\frac1{t-z_k}$, where $z_1,\dots,z_n$ are complex numbers. We describe the set of functions that can be approximated by simple partial fractions within any accuracy and the set of functions that can be approximated by convex combinations of them (the cone of simple partial fractions). We obtain estimates for the norms of simple partial fractions and conditions for the convergence of function series $\sum_{k=1}^\infty\frac1{t-z_k}$ in the space $L_p$. Our approach is based on the use of the Hilbert transform and the methods of convex analysis.
Keywords: approximation, simple partial fraction, convergence of function series, entire function, logarithmic derivative.
Mots-clés : Hilbert transform
@article{IM2_2009_73_2_a4,
     author = {V. Yu. Protasov},
     title = {Approximation by simple partial fractions and the {Hilbert} transform},
     journal = {Izvestiya. Mathematics },
     pages = {333--349},
     publisher = {mathdoc},
     volume = {73},
     number = {2},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2009_73_2_a4/}
}
TY  - JOUR
AU  - V. Yu. Protasov
TI  - Approximation by simple partial fractions and the Hilbert transform
JO  - Izvestiya. Mathematics 
PY  - 2009
SP  - 333
EP  - 349
VL  - 73
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2009_73_2_a4/
LA  - en
ID  - IM2_2009_73_2_a4
ER  - 
%0 Journal Article
%A V. Yu. Protasov
%T Approximation by simple partial fractions and the Hilbert transform
%J Izvestiya. Mathematics 
%D 2009
%P 333-349
%V 73
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2009_73_2_a4/
%G en
%F IM2_2009_73_2_a4
V. Yu. Protasov. Approximation by simple partial fractions and the Hilbert transform. Izvestiya. Mathematics , Tome 73 (2009) no. 2, pp. 333-349. http://geodesic.mathdoc.fr/item/IM2_2009_73_2_a4/