Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2009_73_2_a4, author = {V. Yu. Protasov}, title = {Approximation by simple partial fractions and the {Hilbert} transform}, journal = {Izvestiya. Mathematics }, pages = {333--349}, publisher = {mathdoc}, volume = {73}, number = {2}, year = {2009}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2009_73_2_a4/} }
V. Yu. Protasov. Approximation by simple partial fractions and the Hilbert transform. Izvestiya. Mathematics , Tome 73 (2009) no. 2, pp. 333-349. http://geodesic.mathdoc.fr/item/IM2_2009_73_2_a4/
[1] V. I. Danchenko, “Estimates of the distances from the poles of logarithmic derivatives of polynomials to lines and circles”, Russian Acad. Sci. Sb. Math., 82:2 (1995), 425–440 | DOI | MR | Zbl
[2] V. I. Danchenko, D. Ya. Danchenko, “Approximation by simplest fractions”, Math. Notes, 70:3–4 (2001), 502–507 | DOI | MR | Zbl
[3] O. N. Kosukhin, “Approximation properties of the most simple fractions”, Moscow Univ. Math. Bull., 56:4 (2001), 36–40 | MR | Zbl
[4] P. A. Borodin, O. N. Kosukhin, “Approximation by the simplest fractions on the real axis”, Moscow Univ. Math. Bull., 60:1 (2005), 1–6 | MR | Zbl
[5] A. D. Polyanin, A. V. Manzhirov, Handbook of integral equations, 2nd edition, CRC, Boca Raton, FL, 2008 | MR | Zbl | Zbl
[6] S. K. Pichorides, “On the best values of the constants in the theorems of M. Riesz, Zygmund and Kolmogorov”, Studia Math., 44 (1972), 165–179 | MR | Zbl
[7] F. D. Gakhov, Boundary value problems, Pergamon, Oxford–New York–Paris; Addison-Wesley, Reading, MA–London, 1966 | MR | MR | Zbl | Zbl
[8] E. M. Stein, G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Math. Ser., 32, Princeton Univ. Press, Princeton, NJ, 1971 | MR | Zbl | Zbl
[9] J. M. Borwein, A. S. Lewis, Convex analysis and nonlinear optimization. Theory and examples, CMS Books Math./Ouvrages Math. SMC, 3, Springer-Verlag, New York, 2000 | MR | Zbl
[10] G. G. Magaril-Il'yaev, V. M. Tikhomirov, Convex analysis: theory and applications, Transl. Math. Monogr., 222, Amer. Math. Soc., Providence, RI, 2003 | MR | Zbl
[11] A. Barvinok, A course in convexity, Grad. Stud. Math., 54, Amer. Math. Soc., Providence, RI, 2002 | MR | Zbl
[12] J. B. Garnett, Bounded analytic functions, Pure Appl. Math., 96, Academic Press, New York–London, 1981 | MR | MR | Zbl | Zbl
[13] A. N. Kolmogorov, S. V. Fomin, Introductory real analysis, Prentice-Hall, Englewood Cliffs, NJ, 1970 | MR | MR | Zbl | Zbl
[14] A. I. Markushevich, Teoriya analiticheskikh funktsii, t. 2. Dalneishee postroenie teorii, 2-e izd., Nauka, M., 1968 | Zbl
[15] P. A. Borodin, “Estimates of the distances to direct lines and rays from the poles of simplest fractions bounded in the norm of $L_p$ on these sets”, Math. Notes, 82:5–6 (2007), 725–732 | DOI | MR | Zbl
[16] I. G. Petrovsky, Lectures on partial differential equations, Interscience Publ., New York–London, 1954 | MR | MR | Zbl