Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2009_73_2_a3, author = {Yu. V. Malykhin}, title = {Widths related to pseudo-dimension}, journal = {Izvestiya. Mathematics }, pages = {319--332}, publisher = {mathdoc}, volume = {73}, number = {2}, year = {2009}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2009_73_2_a3/} }
Yu. V. Malykhin. Widths related to pseudo-dimension. Izvestiya. Mathematics , Tome 73 (2009) no. 2, pp. 319-332. http://geodesic.mathdoc.fr/item/IM2_2009_73_2_a3/
[1] V. N. Vapnik, A. Ya. Chervonenkis, “On the uniform convergence of relative frequencies of events to their probabilities”, Theor. Probability Appl., 16:2 (1971), 264–280 | DOI | MR | Zbl
[2] H. S. Shapiro, “Some negative theorems of approximation theory”, Michigan Math. J., 11:3 (1964), 211–217 | DOI | MR | Zbl
[3] H. E. Warren, “Lower bounds for approximation by nonlinear manifolds”, Trans. Amer. Math. Soc., 133:1 (1968), 167–178 | DOI | MR | Zbl
[4] A. Andrianov, “On pseudo-dimension of certain sets of functions”, East J. Approx., 5:4 (1999), 393–402 | MR | Zbl
[5] V. Maiorov, J. Ratsaby, “On the degree of approximation by manifolds of finite pseudo-dimension”, Constr. Approx., 15:2 (1999), 291–300 | DOI | MR | Zbl
[6] V. Maiorov, “Optimal non-linear approximation using sets of finite pseudo-dimension”, East J. Approx., 11:1 (2005), 1–19 | MR | Zbl
[7] S. Mendelson, R. Vershynin, “Entropy and the combinatorial dimension”, Invent. Math., 152:1 (2003), 37–55 | DOI | MR | Zbl
[8] M. Rudelson, R. Vershynin, “Combinatorics of random processes and sections of convex bodies”, Ann. of Math. (2), 164:2 (2006), 603–648 | DOI | MR | Zbl