Fourier series of functions with a non-summable derivative
Izvestiya. Mathematics , Tome 73 (2009) no. 2, pp. 301-318

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the convergence of Fourier series in the norm of Orlicz spaces narrower than $L(e^x)$. It is shown that if a continuous function has a non-summable derivative, then its Fourier series is not necessarily convergent in the norm of these Orlicz spaces. We find a condition on a bounded function $f$ under which the Fourier series of $f$ is convergent in the norm of an Orlicz space $L(\varphi)\subset L(e^x)$ and estimate the accuracy of this result.
Keywords: Fourier series, Lorentz spaces, local modulus of continuity.
Mots-clés : convergence
@article{IM2_2009_73_2_a2,
     author = {S. F. Lukomskii},
     title = {Fourier series of functions with a non-summable derivative},
     journal = {Izvestiya. Mathematics },
     pages = {301--318},
     publisher = {mathdoc},
     volume = {73},
     number = {2},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2009_73_2_a2/}
}
TY  - JOUR
AU  - S. F. Lukomskii
TI  - Fourier series of functions with a non-summable derivative
JO  - Izvestiya. Mathematics 
PY  - 2009
SP  - 301
EP  - 318
VL  - 73
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2009_73_2_a2/
LA  - en
ID  - IM2_2009_73_2_a2
ER  - 
%0 Journal Article
%A S. F. Lukomskii
%T Fourier series of functions with a non-summable derivative
%J Izvestiya. Mathematics 
%D 2009
%P 301-318
%V 73
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2009_73_2_a2/
%G en
%F IM2_2009_73_2_a2
S. F. Lukomskii. Fourier series of functions with a non-summable derivative. Izvestiya. Mathematics , Tome 73 (2009) no. 2, pp. 301-318. http://geodesic.mathdoc.fr/item/IM2_2009_73_2_a2/