Isometric immersions of a cone and a cylinder
Izvestiya. Mathematics , Tome 73 (2009) no. 1, pp. 181-213.

Voir la notice de l'article provenant de la source Math-Net.Ru

We thoroughly analyse the method used by Pogorelov to construct piecewise-smooth tubular surfaces in $\mathbb R^3$ isometric to the surface of a right circular cylinder. The properties of the inverse images of edges of any tubular surface on its planar unfolding are investigated in detail. We find conditions on plane curves lying on the unfolding that enable them to be the inverse images of edges of some tubular surface. We make a refinement concerning the number of smooth pieces that form a piecewise-smooth tubular surface. We generalize Pogorelov's method from the surface of a right circular cylinder to that of a right circular cone.
Keywords: surface theory, surfaces in three-dimensional space.
@article{IM2_2009_73_1_a9,
     author = {M. I. Shtogrin},
     title = {Isometric immersions of a cone and a cylinder},
     journal = {Izvestiya. Mathematics },
     pages = {181--213},
     publisher = {mathdoc},
     volume = {73},
     number = {1},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2009_73_1_a9/}
}
TY  - JOUR
AU  - M. I. Shtogrin
TI  - Isometric immersions of a cone and a cylinder
JO  - Izvestiya. Mathematics 
PY  - 2009
SP  - 181
EP  - 213
VL  - 73
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2009_73_1_a9/
LA  - en
ID  - IM2_2009_73_1_a9
ER  - 
%0 Journal Article
%A M. I. Shtogrin
%T Isometric immersions of a cone and a cylinder
%J Izvestiya. Mathematics 
%D 2009
%P 181-213
%V 73
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2009_73_1_a9/
%G en
%F IM2_2009_73_1_a9
M. I. Shtogrin. Isometric immersions of a cone and a cylinder. Izvestiya. Mathematics , Tome 73 (2009) no. 1, pp. 181-213. http://geodesic.mathdoc.fr/item/IM2_2009_73_1_a9/

[1] A. V. Pogorelov, Bendings of surfaces and stability of shells, Transl. Math. Monogr., 72, Amer. Math. Soc., Providence, RI, 1988 | MR | MR | Zbl | Zbl

[2] M. I. Shtogrin, “Special isometric transformations of the surfaces of the Platonic solids”, Russian Math. Surveys, 60:4 (2005), 799–801 | DOI | MR | Zbl

[3] M. I. Shtogrin, “Isometric embeddings of the surfaces of the Platonic solids”, Russian Math. Surveys, 62:2 (2007), 395–397 | DOI | MR

[4] M. I. Shtogrin, “Special isometric transformations of a cylinder”, Russian Math. Surveys, 62:5 (2007), 1015–1017 | DOI | MR | Zbl

[5] M. I. Shtogrin, “Special isometric transformations of a cone”, Russian Math. Surveys, 63:2 (2008), 388–390 | DOI

[6] A. V. Shubnikov, V. A. Koptsik, Simmetriya v nauke i iskusstve, Nauka, M., 1972

[7] M. I. Shtogrin, “Kusochno gladkie razvertyvayuschiesya poverkhnosti”, Geometriya, topologiya i matematicheskaya fizika, I: Sbornik statei. K 70-letiyu so dnya rozhdeniya akademika S. P. Novikova, Tr. MIAN, 263, Nauka, M., 2008, 227–250