Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2009_73_1_a8, author = {P. A. Terekhin}, title = {Affine synthesis in the space $L^2(\mathbb R^d)$}, journal = {Izvestiya. Mathematics }, pages = {171--180}, publisher = {mathdoc}, volume = {73}, number = {1}, year = {2009}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2009_73_1_a8/} }
P. A. Terekhin. Affine synthesis in the space $L^2(\mathbb R^d)$. Izvestiya. Mathematics , Tome 73 (2009) no. 1, pp. 171-180. http://geodesic.mathdoc.fr/item/IM2_2009_73_1_a8/
[1] I. Daubechies, Ten lectures on wavelets, CBMS-NSF Regional Conf. Ser. in Appl. Math., 61, SIAM, Philadelphia, PA, 1992 | MR | Zbl | Zbl
[2] E. Hernández, G. Weiss, A fisrt course on wavelets, Stud. Adv. Math., CRC Press, Boca Raton, FL, 1996 | MR | Zbl
[3] V. I. Filippov, P. Oswald, “Representation in $L_p$ by series of translates and dilates of one function”, J. Approx. Theory, 82:1 (1995), 15–29 | DOI | MR | Zbl
[4] Ch. K. Chui, Qiyu Sun, “Affine frame decompositions and shift-invariant spaces”, Appl. Comput. Harmon. Anal., 20:1 (2006), 74–107 | DOI | MR | Zbl
[5] H.-Q. Bui, R. S. Laugesen, “Affine systems that span Lebesgue spaces”, J. Fourier Anal. Appl., 11:5 (2005), 533–556 | DOI | MR | Zbl
[6] H.-Q. Bui, R. S. Laugesen, Affine synthesis and coefficient norms for Lebesgue, Hardy and Sobolev spaces, , 2007 http:// www.math.uiuc.edu/\allowbreakl̃augesen/ publications.html
[7] I. Ya. Novikov, V. Yu. Protasov, M. A. Skopina, Teoriya vspleskov, Fizmatlit, M., 2005
[8] O. Christensen, An introduction to frames and Riesz bases, Appl. Numer. Harmon. Anal., Birkhäuser, Boston, MA, 2003 | MR | Zbl
[9] G. Weiss, E. N. Wilson, “The mathematical theory of wavelets”, Twentieth century harmonic analysis – a celebration, Proceedings of the NATO Advanced Study Institute (Il Ciocco, Italy, 2000), NATO Sci. Ser. II Math. Phys. Chem., 33, Kluwer Acad. Publ., Dordrecht, 2001, 329–366 | MR | Zbl