Automorphisms of Galois coverings of generic $m$-canonical projections
Izvestiya. Mathematics , Tome 73 (2009) no. 1, pp. 121-150

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the automorphism groups of Galois coverings induced by pluricanonical generic coverings of projective spaces. In dimensions one and two, it is shown that such coverings yield sequences of examples where specific actions of the symmetric group $S_d$ on curves and surfaces cannot be deformed together with the action of $S_d$ into manifolds whose automorphism group does not coincide with $S_d$. As an application, we give new examples of complex and real $G$-varieties which are diffeomorphic but not deformation equivalent.
Keywords: generic coverings of projective lines and planes, Galois group of a covering, automorphism group of a projective variety.
Mots-clés : Galois extensions
@article{IM2_2009_73_1_a6,
     author = {Vik. S. Kulikov and V. M. Kharlamov},
     title = {Automorphisms of {Galois} coverings of generic $m$-canonical projections},
     journal = {Izvestiya. Mathematics },
     pages = {121--150},
     publisher = {mathdoc},
     volume = {73},
     number = {1},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2009_73_1_a6/}
}
TY  - JOUR
AU  - Vik. S. Kulikov
AU  - V. M. Kharlamov
TI  - Automorphisms of Galois coverings of generic $m$-canonical projections
JO  - Izvestiya. Mathematics 
PY  - 2009
SP  - 121
EP  - 150
VL  - 73
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2009_73_1_a6/
LA  - en
ID  - IM2_2009_73_1_a6
ER  - 
%0 Journal Article
%A Vik. S. Kulikov
%A V. M. Kharlamov
%T Automorphisms of Galois coverings of generic $m$-canonical projections
%J Izvestiya. Mathematics 
%D 2009
%P 121-150
%V 73
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2009_73_1_a6/
%G en
%F IM2_2009_73_1_a6
Vik. S. Kulikov; V. M. Kharlamov. Automorphisms of Galois coverings of generic $m$-canonical projections. Izvestiya. Mathematics , Tome 73 (2009) no. 1, pp. 121-150. http://geodesic.mathdoc.fr/item/IM2_2009_73_1_a6/