Automorphisms of Galois coverings of generic $m$-canonical projections
Izvestiya. Mathematics , Tome 73 (2009) no. 1, pp. 121-150
Voir la notice de l'article provenant de la source Math-Net.Ru
We investigate the automorphism groups of Galois coverings induced
by pluricanonical generic coverings of projective spaces.
In dimensions one and two, it is shown that such coverings yield
sequences of examples where specific actions of the symmetric
group $S_d$ on curves and surfaces cannot be deformed together
with the action of $S_d$ into manifolds whose automorphism group
does not coincide with $S_d$. As an application,
we give new examples of complex and real $G$-varieties which are
diffeomorphic but not deformation equivalent.
Keywords:
generic coverings of projective lines and planes, Galois group of a covering, automorphism group of a projective variety.
Mots-clés : Galois extensions
Mots-clés : Galois extensions
@article{IM2_2009_73_1_a6,
author = {Vik. S. Kulikov and V. M. Kharlamov},
title = {Automorphisms of {Galois} coverings of generic $m$-canonical projections},
journal = {Izvestiya. Mathematics },
pages = {121--150},
publisher = {mathdoc},
volume = {73},
number = {1},
year = {2009},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2009_73_1_a6/}
}
TY - JOUR AU - Vik. S. Kulikov AU - V. M. Kharlamov TI - Automorphisms of Galois coverings of generic $m$-canonical projections JO - Izvestiya. Mathematics PY - 2009 SP - 121 EP - 150 VL - 73 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2009_73_1_a6/ LA - en ID - IM2_2009_73_1_a6 ER -
Vik. S. Kulikov; V. M. Kharlamov. Automorphisms of Galois coverings of generic $m$-canonical projections. Izvestiya. Mathematics , Tome 73 (2009) no. 1, pp. 121-150. http://geodesic.mathdoc.fr/item/IM2_2009_73_1_a6/