Two-colour rotations of the unit circle
Izvestiya. Mathematics , Tome 73 (2009) no. 1, pp. 79-120
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider two-colour, or double, rotations
$S_{(\alpha,\beta,\varepsilon)}(x)$ of the unit circle $C$ the
colouring of which depends on a continuous parameter $\varepsilon\in C$
and each area of which is given its own rotation angle, $\alpha$
or $\beta$. We choose as a model the one-parameter family of two-colour
rotations $S_\varepsilon(x)=S_{(2\tau,\tau,\varepsilon)}(x)$,
where $\tau=(1+\sqrt{5}\,)/2$ is the golden ratio,
which have rotation rank $d=2$. It is proved that the first-return map
$S_\varepsilon|\mathrm{Att}_\varepsilon$ (the restriction of the
rotation $S_\varepsilon(x)$ to its attractor $\mathrm{Att}_\varepsilon$)
is isomorphic to the integral map
$T_\varepsilon=T(S^{\pm1},d_\varepsilon)$ constructed from the simple
rotation $S$ of the circle through the angle $\pm \tau$ and
some piecewise-constant function $d_\varepsilon$.
An exact formula is obtained for the function $\nu(\varepsilon)$
of frequency distribution of points of the orbits
under the action of $S_\varepsilon$.
Keywords:
two-colour (double) rotations, ITM-maps (interval translation maps), distribution of fractional parts, Fibonacci tilings.
@article{IM2_2009_73_1_a5,
author = {V. G. Zhuravlev},
title = {Two-colour rotations of the unit circle},
journal = {Izvestiya. Mathematics },
pages = {79--120},
publisher = {mathdoc},
volume = {73},
number = {1},
year = {2009},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2009_73_1_a5/}
}
V. G. Zhuravlev. Two-colour rotations of the unit circle. Izvestiya. Mathematics , Tome 73 (2009) no. 1, pp. 79-120. http://geodesic.mathdoc.fr/item/IM2_2009_73_1_a5/