Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2009_73_1_a5, author = {V. G. Zhuravlev}, title = {Two-colour rotations of the unit circle}, journal = {Izvestiya. Mathematics }, pages = {79--120}, publisher = {mathdoc}, volume = {73}, number = {1}, year = {2009}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2009_73_1_a5/} }
V. G. Zhuravlev. Two-colour rotations of the unit circle. Izvestiya. Mathematics , Tome 73 (2009) no. 1, pp. 79-120. http://geodesic.mathdoc.fr/item/IM2_2009_73_1_a5/
[1] M. Boshernitzan, I. Kornfeld, “Interval translation mappings”, Ergodic Theory Dynam. Systems, 15:5 (1995), 821–832 | MR | Zbl
[2] I. P. Cornfeld, S. V. Fomin, Ya. G. Sinaĭ, Ergodic theory, Grundlehren Math. Wiss., 245, Springer-Verlag, New York, 1982 | MR | MR | Zbl | Zbl
[3] H. Suzuki, Sh. Ito, K. Aihara, “Double rotations”, Discrete Contin. Dynam. Systems, 13:2 (2005), 515–532 | DOI | MR | Zbl
[4] H. Bruin, S. Troubetzkoy, “The Gauss map on a class of interval translation mappings”, Israel J. Math., 137:1 (2003), 125–148 | DOI | MR | Zbl
[5] A. V. Shutov, “On the distribution of the two-color shift values modulo one”, Abstracts of 5th International Algebraic Conference in Ukraine, Odessa, 2005, 194
[6] V. G. Zhuravlev, One-dimensional Fibonacci tilings and derivatives of two-colour rotations of a circle, preprint Max-Planck-Institut für Mathematik, 59, 2004, 1–43
[7] V. G. Zhuravlev, “One-dimensional Fibonacci tilings”, Izv. Math., 71:2 (2007), 307–340 | DOI | MR | Zbl
[8] V. G. Zhuravlev, “Odnomernye razbieniya Fibonachchi”, Tr. XVII Mezhdunarodnoi letnei shkoly po sovremennym problemam teoreticheskoi i matematicheskoi fiziki (Volga, XVII-2005), Izd-vo KGU, Kazan, 2006, 63–78
[9] G. Rauzy, “Echanges d'intervalles et transformations induites”, Acta Arith., 34:4 (1979), 315–328 | MR | Zbl
[10] V. G. Zhuravlev, A. V. Shutov, Derivatives of circles and similarity of orbits, preprint Max-Planck-Institut für Mathematik, 62, 2004, 1–11