Two-colour rotations of the unit circle
Izvestiya. Mathematics , Tome 73 (2009) no. 1, pp. 79-120.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider two-colour, or double, rotations $S_{(\alpha,\beta,\varepsilon)}(x)$ of the unit circle $C$ the colouring of which depends on a continuous parameter $\varepsilon\in C$ and each area of which is given its own rotation angle, $\alpha$ or $\beta$. We choose as a model the one-parameter family of two-colour rotations $S_\varepsilon(x)=S_{(2\tau,\tau,\varepsilon)}(x)$, where $\tau=(1+\sqrt{5}\,)/2$ is the golden ratio, which have rotation rank $d=2$. It is proved that the first-return map $S_\varepsilon|\mathrm{Att}_\varepsilon$ (the restriction of the rotation $S_\varepsilon(x)$ to its attractor $\mathrm{Att}_\varepsilon$) is isomorphic to the integral map $T_\varepsilon=T(S^{\pm1},d_\varepsilon)$ constructed from the simple rotation $S$ of the circle through the angle $\pm \tau$ and some piecewise-constant function $d_\varepsilon$. An exact formula is obtained for the function $\nu(\varepsilon)$ of frequency distribution of points of the orbits under the action of $S_\varepsilon$.
Keywords: two-colour (double) rotations, ITM-maps (interval translation maps), distribution of fractional parts, Fibonacci tilings.
@article{IM2_2009_73_1_a5,
     author = {V. G. Zhuravlev},
     title = {Two-colour rotations of the unit circle},
     journal = {Izvestiya. Mathematics },
     pages = {79--120},
     publisher = {mathdoc},
     volume = {73},
     number = {1},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2009_73_1_a5/}
}
TY  - JOUR
AU  - V. G. Zhuravlev
TI  - Two-colour rotations of the unit circle
JO  - Izvestiya. Mathematics 
PY  - 2009
SP  - 79
EP  - 120
VL  - 73
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2009_73_1_a5/
LA  - en
ID  - IM2_2009_73_1_a5
ER  - 
%0 Journal Article
%A V. G. Zhuravlev
%T Two-colour rotations of the unit circle
%J Izvestiya. Mathematics 
%D 2009
%P 79-120
%V 73
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2009_73_1_a5/
%G en
%F IM2_2009_73_1_a5
V. G. Zhuravlev. Two-colour rotations of the unit circle. Izvestiya. Mathematics , Tome 73 (2009) no. 1, pp. 79-120. http://geodesic.mathdoc.fr/item/IM2_2009_73_1_a5/

[1] M. Boshernitzan, I. Kornfeld, “Interval translation mappings”, Ergodic Theory Dynam. Systems, 15:5 (1995), 821–832 | MR | Zbl

[2] I. P. Cornfeld, S. V. Fomin, Ya. G. Sinaĭ, Ergodic theory, Grundlehren Math. Wiss., 245, Springer-Verlag, New York, 1982 | MR | MR | Zbl | Zbl

[3] H. Suzuki, Sh. Ito, K. Aihara, “Double rotations”, Discrete Contin. Dynam. Systems, 13:2 (2005), 515–532 | DOI | MR | Zbl

[4] H. Bruin, S. Troubetzkoy, “The Gauss map on a class of interval translation mappings”, Israel J. Math., 137:1 (2003), 125–148 | DOI | MR | Zbl

[5] A. V. Shutov, “On the distribution of the two-color shift values modulo one”, Abstracts of 5th International Algebraic Conference in Ukraine, Odessa, 2005, 194

[6] V. G. Zhuravlev, One-dimensional Fibonacci tilings and derivatives of two-colour rotations of a circle, preprint Max-Planck-Institut für Mathematik, 59, 2004, 1–43

[7] V. G. Zhuravlev, “One-dimensional Fibonacci tilings”, Izv. Math., 71:2 (2007), 307–340 | DOI | MR | Zbl

[8] V. G. Zhuravlev, “Odnomernye razbieniya Fibonachchi”, Tr. XVII Mezhdunarodnoi letnei shkoly po sovremennym problemam teoreticheskoi i matematicheskoi fiziki (Volga, XVII-2005), Izd-vo KGU, Kazan, 2006, 63–78

[9] G. Rauzy, “Echanges d'intervalles et transformations induites”, Acta Arith., 34:4 (1979), 315–328 | MR | Zbl

[10] V. G. Zhuravlev, A. V. Shutov, Derivatives of circles and similarity of orbits, preprint Max-Planck-Institut für Mathematik, 62, 2004, 1–11