Convergence of a numerical abstract convexity algorithm
Izvestiya. Mathematics , Tome 73 (2009) no. 1, pp. 3-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose a series of algorithms for solving abstract convex programming problems and prove convergence to the global solution of the problem. The algorithms use an approximation of the objective function by piecewise-linear minorants.
Keywords: convex analysis, global optimization, branching algorithm, generalized cutting-plane method.
@article{IM2_2009_73_1_a1,
     author = {M. Yu. Andramonov},
     title = {Convergence of a numerical abstract convexity algorithm},
     journal = {Izvestiya. Mathematics },
     pages = {3--19},
     publisher = {mathdoc},
     volume = {73},
     number = {1},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2009_73_1_a1/}
}
TY  - JOUR
AU  - M. Yu. Andramonov
TI  - Convergence of a numerical abstract convexity algorithm
JO  - Izvestiya. Mathematics 
PY  - 2009
SP  - 3
EP  - 19
VL  - 73
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2009_73_1_a1/
LA  - en
ID  - IM2_2009_73_1_a1
ER  - 
%0 Journal Article
%A M. Yu. Andramonov
%T Convergence of a numerical abstract convexity algorithm
%J Izvestiya. Mathematics 
%D 2009
%P 3-19
%V 73
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2009_73_1_a1/
%G en
%F IM2_2009_73_1_a1
M. Yu. Andramonov. Convergence of a numerical abstract convexity algorithm. Izvestiya. Mathematics , Tome 73 (2009) no. 1, pp. 3-19. http://geodesic.mathdoc.fr/item/IM2_2009_73_1_a1/

[1] S. S. Kutateladze, A. M. Rubinov, Dvoistvennost Minkovskogo i ee prilozheniya, Nauka, Novosibirsk, 1976 | MR

[2] V. L. Levin, “Semiconical sets, semi-homogeneous functions, and a new duality scheme in convex analysis”, Russian Acad. Sci. Dokl. Math., 55:3 (1997), 421–423 | MR | Zbl

[3] A. Rubinov, Abstract convexity and global optimization, Nonconvex Optim. Appl., 44, Kluwer Acad. Publ., Dordrecht, 2000 | MR | Zbl

[4] D. Pallaschke, S. Rolewicz, Foundations of mathematical optimization. Convex analysis without linearity, Math. Appl., 388, Kluwer Acad. Publ., Dordrecht, 1997 | MR | Zbl

[5] I. Singer, Abstract convex analysis, Canad. Math. Soc. Ser. Monogr. Adv. Texts, Wiley, New York, 1997 | MR | Zbl

[6] A. M. Rubinov, B. M. Glover, V. Jeyakumar, “A general approach to dual characterizations of solvability of inequality systems with applications”, J. Convex Anal., 2:1–2 (1995), 309–344 | MR | Zbl

[7] A. M. Rubinov, B. M. Glover, “Increasing convex-along-rays functions with applications to global optimization”, J. Optim. Theory Appl., 102:3 (1999), 615–642 | DOI | MR | Zbl

[8] J. E. Kelley, jr., “The cutting-plane method for solving convex programs”, J. Soc. Indust. Appl. Math., 8:4 (1960), 703–712 | DOI | MR | Zbl

[9] M. Andramonov, A. Rubinov, B. Glover, “Cutting angle methods in global optimization”, Appl. Math. Lett., 12:3 (1999), 95–100 | DOI | MR | Zbl

[10] M. Yu. Andramonov, A. M. Rubinov, B. M. Glover, Cutting angle method for minimizing increasing convex-along-rays functions, Research Report, University of Ballarat, 1997

[11] E. Balas, “Disjunctive programming”, Discrete optimization II, Proc. Adv. Res. Inst. Discrete Optimization and Systems Appl. (Banff, 1977), Ann. Discrete Math., 5, 1979, 3–51 | DOI | MR | Zbl

[12] N. Beaumont, “An algorithm for disjunctive programs”, European J. Oper. Res., 48:3 (1990), 362–371 | DOI | Zbl

[13] R. Horst, H. Tuy, Global optimization. Deterministic approaches, Springer-Verlag, Berlin, 1990 | MR | Zbl

[14] J. D. Pintér, Global optimization in action. Continuous and Lipschitz optimization: algorithms, implementations and applications, Nonconvex Optim. Appl., 6, Kluwer Acad. Publ., Dordrecht, 1996 | MR | Zbl

[15] Handbook of global optimization, Nonconvex Optim. Appl., 2, eds. R. Horst, M. P. Pardalos, Kluwer Acad. Publ., Dordrecht, 1995 | MR | Zbl