Minimal Gromov--Witten rings
Izvestiya. Mathematics , Tome 72 (2008) no. 6, pp. 1253-1272.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct an abstract theory of Gromov–Witten invariants of genus 0 for quantum minimal Fano varieties (a minimal class of varieties which is natural from the quantum cohomological viewpoint). Namely, we consider the minimal Gromov–Witten ring: a commutative algebra whose generators and relations are of the form used in the Gromov–Witten theory of Fano varieties (of unspecified dimension). The Gromov–Witten theory of any quantum minimal variety is a homomorphism from this ring to $\mathbb C$. We prove an abstract reconstruction theorem which says that this ring is isomorphic to the free commutative ring generated by ‘prime two-pointed invariants’. We also find solutions of the differential equation of type $DN$ for a Fano variety of dimension $N$ in terms of the generating series of one-pointed Gromov–Witten invariants.
@article{IM2_2008_72_6_a6,
     author = {V. V. Przyjalkowski},
     title = {Minimal {Gromov--Witten} rings},
     journal = {Izvestiya. Mathematics },
     pages = {1253--1272},
     publisher = {mathdoc},
     volume = {72},
     number = {6},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2008_72_6_a6/}
}
TY  - JOUR
AU  - V. V. Przyjalkowski
TI  - Minimal Gromov--Witten rings
JO  - Izvestiya. Mathematics 
PY  - 2008
SP  - 1253
EP  - 1272
VL  - 72
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2008_72_6_a6/
LA  - en
ID  - IM2_2008_72_6_a6
ER  - 
%0 Journal Article
%A V. V. Przyjalkowski
%T Minimal Gromov--Witten rings
%J Izvestiya. Mathematics 
%D 2008
%P 1253-1272
%V 72
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2008_72_6_a6/
%G en
%F IM2_2008_72_6_a6
V. V. Przyjalkowski. Minimal Gromov--Witten rings. Izvestiya. Mathematics , Tome 72 (2008) no. 6, pp. 1253-1272. http://geodesic.mathdoc.fr/item/IM2_2008_72_6_a6/

[1] V. Golyshev, J. Stienstra, “Fuchsian equations of type DN”, Commun. Number Theory Phys., 1:2 (2007), 323–346 | MR

[2] M. Kontsevich, Yu. Manin, “Gromov–Witten classes, quantum cohomology, and enumerative geometry”, Comm. Math. Phys., 164:3 (1994), 525–562 | DOI | MR | Zbl

[3] V. V. Przyjalkowski, “Gromov–Witten invariants of Fano threefolds of genera 6 and 8”, Sb. Math., 198:3 (2007), 433–446 | DOI | MR | Zbl

[4] V. V. Przyjalkowski, “Quantum cohomology of smooth complete intersections in weighted projective spaces and in singular toric varieties”, Sb. Math., 198:9 (2007), 1325–1340 | DOI | MR | Zbl

[5] M. Kontsevich, Yu. Manin, “Relations between the correlators of the topological sigma-model coupled to gravity”, Comm. Math. Phys., 196:2 (1998), 385–398 | DOI | MR | Zbl

[6] Yu. I. Manin, Frobenius manifolds, quantum cohomology, and moduli spaces, Amer. Math. Soc. Colloq. Publ., 47, Amer. Math. Soc., Providence, RI, 1999 | MR | Zbl

[7] R. Pandharipande, “Rational curves on hypersurfaces (after A. Givental)”, Séminaire Bourbaki, vol. 1997/98, Astérisque, 252, Soc. Mathématique de France, Paris, 1998, 307–340 | MR | Zbl

[8] V. V. Golyshev, “Classification problems and mirror duality”, Surveys in geometry and number theory: reports on contemporary Russian mathematics, London Math. Soc. Lecture Note Ser., 338, Cambridge Univ. Press, Cambridge, 2007, 88–121 ; arXiv: math.AG/0510287 | MR | Zbl

[9] E. A. Coddington, N. Levinson, Theory of ordinary differential equations, McGraw-Hill, New York–Toronto–London, 1955 | MR | Zbl

[10] V. V. Batyrev, D. van Straten, “Generalized hypergeometric functions and rational curves on Calabi–Yau complete intersections in toric varieties”, Comm. Math. Phys., 168:3 (1995), 493–533 | DOI | MR | Zbl

[11] E. N. Tjotta, Rational curves on the space of determinantal nets of conics, Thesis, 1998; arXiv: math.AG/9802037