Minimal Gromov--Witten rings
Izvestiya. Mathematics , Tome 72 (2008) no. 6, pp. 1253-1272

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct an abstract theory of Gromov–Witten invariants of genus 0 for quantum minimal Fano varieties (a minimal class of varieties which is natural from the quantum cohomological viewpoint). Namely, we consider the minimal Gromov–Witten ring: a commutative algebra whose generators and relations are of the form used in the Gromov–Witten theory of Fano varieties (of unspecified dimension). The Gromov–Witten theory of any quantum minimal variety is a homomorphism from this ring to $\mathbb C$. We prove an abstract reconstruction theorem which says that this ring is isomorphic to the free commutative ring generated by ‘prime two-pointed invariants’. We also find solutions of the differential equation of type $DN$ for a Fano variety of dimension $N$ in terms of the generating series of one-pointed Gromov–Witten invariants.
@article{IM2_2008_72_6_a6,
     author = {V. V. Przyjalkowski},
     title = {Minimal {Gromov--Witten} rings},
     journal = {Izvestiya. Mathematics },
     pages = {1253--1272},
     publisher = {mathdoc},
     volume = {72},
     number = {6},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2008_72_6_a6/}
}
TY  - JOUR
AU  - V. V. Przyjalkowski
TI  - Minimal Gromov--Witten rings
JO  - Izvestiya. Mathematics 
PY  - 2008
SP  - 1253
EP  - 1272
VL  - 72
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2008_72_6_a6/
LA  - en
ID  - IM2_2008_72_6_a6
ER  - 
%0 Journal Article
%A V. V. Przyjalkowski
%T Minimal Gromov--Witten rings
%J Izvestiya. Mathematics 
%D 2008
%P 1253-1272
%V 72
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2008_72_6_a6/
%G en
%F IM2_2008_72_6_a6
V. V. Przyjalkowski. Minimal Gromov--Witten rings. Izvestiya. Mathematics , Tome 72 (2008) no. 6, pp. 1253-1272. http://geodesic.mathdoc.fr/item/IM2_2008_72_6_a6/