An adelic resolution for homology sheaves
Izvestiya. Mathematics , Tome 72 (2008) no. 6, pp. 1187-1252.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose a generalization of the ordinary idele group by constructing certain adelic complexes for sheaves of $K$-groups on schemes. Such complexes are defined for any abelian sheaf on a scheme. We focus on the case when the sheaf is associated with the presheaf of a homology theory with certain natural axioms satisfied, in particular, by $K$-theory. In this case it is proved that the adelic complex provides a flabby resolution for this sheaf on smooth varieties over an infinite perfect field and that the natural morphism to the Gersten complex is a quasi-isomorphism. The main advantage of the new adelic resolution is that it is contravariant and multiplicative. In particular, this enables us to reprove that the intersection in Chow groups coincides (up to a sign) with the natural product in the corresponding $K$-cohomology groups. Also, we show that the Weil pairing can be expressed as a Massey triple product in $K$-cohomology groups with certain indices.
@article{IM2_2008_72_6_a5,
     author = {S. O. Gorchinskiy},
     title = {An adelic resolution for homology sheaves},
     journal = {Izvestiya. Mathematics },
     pages = {1187--1252},
     publisher = {mathdoc},
     volume = {72},
     number = {6},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2008_72_6_a5/}
}
TY  - JOUR
AU  - S. O. Gorchinskiy
TI  - An adelic resolution for homology sheaves
JO  - Izvestiya. Mathematics 
PY  - 2008
SP  - 1187
EP  - 1252
VL  - 72
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2008_72_6_a5/
LA  - en
ID  - IM2_2008_72_6_a5
ER  - 
%0 Journal Article
%A S. O. Gorchinskiy
%T An adelic resolution for homology sheaves
%J Izvestiya. Mathematics 
%D 2008
%P 1187-1252
%V 72
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2008_72_6_a5/
%G en
%F IM2_2008_72_6_a5
S. O. Gorchinskiy. An adelic resolution for homology sheaves. Izvestiya. Mathematics , Tome 72 (2008) no. 6, pp. 1187-1252. http://geodesic.mathdoc.fr/item/IM2_2008_72_6_a5/

[1] Zh.-P. Serr, Algebraicheskie gruppy i polya klassov, Mir, M., 1968 ; J.-P. Serre, Groupes algébriques et corps de classes, Actualités scientifiques et industrielles, Publications de l'institut de mathématique de l'université de Nancago, VII, Hermann, Paris, 1959 | Zbl | MR | Zbl

[2] A. N. Paršin, “On the arithmetic of two-dimensional schemes. I. Distributions and residues”, Math. USSR-Izv., 10:4 (1976), 695–729 | DOI | MR | Zbl | Zbl

[3] A. N. Parshin, “Abelian coverings of arithmetic schemes”, Soviet Math. Dokl., 19:6 (1978), 1438–1442 | MR | Zbl

[4] A. A. Beilinson, “Residues and adeles”, Functional Anal. Appl., 14:1 (1980), 34–35 | DOI | MR | Zbl

[5] A. Huber, “On the Parshin–Beilinson adèles for schemes”, Abh. Math. Sem. Univ. Hamburg, 61 (1991), 249–273 | DOI | MR | Zbl

[6] D. Quillen, “Higher algebraic $K$-theory: I”, Higher $K$-theories, Proc. Conf., Battelle Memorial Inst. (Seattle, WA, 1972), Lecture Notes in Math., 341, Springer-Verlag, Berlin, 1973, 85–147 | DOI | MR | Zbl

[7] R. Godement, Topologie algébrique et théorie des faisceaux, Actualités Sci. Ind., 1252, Hermann, Paris, 1958 | MR | MR | Zbl | Zbl

[8] E. W. Howe, “The Weil pairing and the Hilbert symbol”, Math. Ann., 305:1 (1996), 387–392 | DOI | MR | Zbl

[9] M. V. Mazo, “Weil pairing and tame symbols”, Math. Notes, 77:5–6 (2005), 735–738 | DOI | MR | Zbl

[10] S. O. Gorchinskii, “Poincaré biextension and idèles on an algebraic curve”, Sb. Math., 197:1 (2006), 23–36 | DOI | MR | Zbl

[11] R. Hartshorne, Resudues and duality, Lecture notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/64, Lecture Note in Math., 20, Springer-Verlag, Berlin–New York, 1966 | DOI | MR | Zbl

[12] S. Bloch, “Height pairing for algebraic cycles”, J. Pure Appl. Algebra, 34:2–3 (1984), 119–145 | DOI | MR | Zbl

[13] R. W. Thomason, Th. Trobaugh, “Higher algebraic $K$-theory of schemes and of derived categories”, The Grothendieck Festschrift, vol. III, Progr. Math., 88, Birkhäuser, Boston, MA, 1990, 247–435 | MR | Zbl

[14] A. Yekutieli, “The action of adeles on the residue complex”, Comm. Algebra, 31:8 (2003), 4131–4151 | DOI | MR | Zbl

[15] S. Bloch, A. Ogus, “Gersten's conjecture and the homology of schemes”, Ann. Sci. École Norm. Sup. (4), 7 (1974), 181–202 | MR | Zbl

[16] M. Rost, “Chow groups with coefficients”, Doc. Math., 1:16 (1996), 319–393 | MR | Zbl

[17] D. V. Osipov, “Adele constructions of direct images of differentials and symbols”, Sb. Math., 188:5 (1997), 697–723 | DOI | MR | Zbl

[18] W. Fulton, Intersection theory, Ergeb. Math. Grenzgeb. (3), 2, Springer-Verlag, Berlin, 1984 | MR | MR | Zbl

[19] H. Gillet, “Comparison of $K$-theory spectral sequences, with applications”, Algebraic $K$-theory (Evanston, IL 1980), Lecture Notes in Math., 854, Springer-Verlag, Berlin–New York, 1981, 141–167 | DOI | MR | Zbl

[20] D. R. Grayson, “Products in $K$-theory and intersecting algebraic cycles”, Invent. Math., 47:1 (1978), 71–83 | DOI | MR | Zbl

[21] A. N. Parshin, “Chern classes, adèles and $L$-functions”, J. Reine Angew. Math., 341 (1983), 174–192 | MR | Zbl

[22] V. G. Lomadze, “On the intersection index of divisors”, Math. USSR-Izv., 17:2 (1981), 343–352 | DOI | MR | Zbl | Zbl

[23] S. Bloch, “Algebraic $K$-theory and crystalline cohomology”, Inst. Hautes Études Sci. Publ. Math., 47 (1977), 187–268 | DOI | MR | Zbl

[24] A. A. Suslin, “Homology of $GL_n$, characteristic classes and Milnor $K$-theory”, Algebraic $K$-theory, number theory, geometry and analysis (Bielefeld, 1982), Lecture Notes in Math., 1046, Springer-Verlag, Berlin, 1984, 357–375 | DOI | MR | Zbl

[25] J. Milnor, “On spaces having the homotopy type of $CW$-complexes”, Trans. Amer. Math. Soc., 90:2 (1959), 272–280 | DOI | MR | Zbl

[26] V. Srinivas, Algebraic $K$-theory, Progr. Math., 90, Birkhäuser, Boston, MA, 1996 | MR | Zbl

[27] G. W. Whitehead, Elements of homotopy theory, Grad. Texts in Math., 61, Springer-Verlag, New York–Berlin, 1978 | MR | Zbl

[28] S. Bloch, “Algebraic cycles and higher $K$-theory”, Adv. in Math., 61:3 (1986), 267–304 | DOI | MR | Zbl

[29] M. Levine, Mixed motives, Math. Surveys Monogr., 57, Amer. Math. Soc., Providence, RI, 1998 | MR | Zbl

[30] S. Bloch, “Torsion algebraic cycles and a theorem of Roitman”, Compositio Math., 39:1 (1979), 107–127 | MR | Zbl

[31] A. A. Rojtman, “The torsion in the groups of $0$-cycles modulo rational equivalence”, Ann. of Math. (2), 111:3 (1980), 553–569 | DOI | MR | Zbl

[32] C. Deninger, Higher order operations in Deligne cohomology, Schriftenreihe Math. Inst. Univ. Munster 3. Ser., 3, Univ. Münster, Münster, 1991 | MR | Zbl