Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2008_72_6_a5, author = {S. O. Gorchinskiy}, title = {An adelic resolution for homology sheaves}, journal = {Izvestiya. Mathematics }, pages = {1187--1252}, publisher = {mathdoc}, volume = {72}, number = {6}, year = {2008}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2008_72_6_a5/} }
S. O. Gorchinskiy. An adelic resolution for homology sheaves. Izvestiya. Mathematics , Tome 72 (2008) no. 6, pp. 1187-1252. http://geodesic.mathdoc.fr/item/IM2_2008_72_6_a5/
[1] Zh.-P. Serr, Algebraicheskie gruppy i polya klassov, Mir, M., 1968 ; J.-P. Serre, Groupes algébriques et corps de classes, Actualités scientifiques et industrielles, Publications de l'institut de mathématique de l'université de Nancago, VII, Hermann, Paris, 1959 | Zbl | MR | Zbl
[2] A. N. Paršin, “On the arithmetic of two-dimensional schemes. I. Distributions and residues”, Math. USSR-Izv., 10:4 (1976), 695–729 | DOI | MR | Zbl | Zbl
[3] A. N. Parshin, “Abelian coverings of arithmetic schemes”, Soviet Math. Dokl., 19:6 (1978), 1438–1442 | MR | Zbl
[4] A. A. Beilinson, “Residues and adeles”, Functional Anal. Appl., 14:1 (1980), 34–35 | DOI | MR | Zbl
[5] A. Huber, “On the Parshin–Beilinson adèles for schemes”, Abh. Math. Sem. Univ. Hamburg, 61 (1991), 249–273 | DOI | MR | Zbl
[6] D. Quillen, “Higher algebraic $K$-theory: I”, Higher $K$-theories, Proc. Conf., Battelle Memorial Inst. (Seattle, WA, 1972), Lecture Notes in Math., 341, Springer-Verlag, Berlin, 1973, 85–147 | DOI | MR | Zbl
[7] R. Godement, Topologie algébrique et théorie des faisceaux, Actualités Sci. Ind., 1252, Hermann, Paris, 1958 | MR | MR | Zbl | Zbl
[8] E. W. Howe, “The Weil pairing and the Hilbert symbol”, Math. Ann., 305:1 (1996), 387–392 | DOI | MR | Zbl
[9] M. V. Mazo, “Weil pairing and tame symbols”, Math. Notes, 77:5–6 (2005), 735–738 | DOI | MR | Zbl
[10] S. O. Gorchinskii, “Poincaré biextension and idèles on an algebraic curve”, Sb. Math., 197:1 (2006), 23–36 | DOI | MR | Zbl
[11] R. Hartshorne, Resudues and duality, Lecture notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/64, Lecture Note in Math., 20, Springer-Verlag, Berlin–New York, 1966 | DOI | MR | Zbl
[12] S. Bloch, “Height pairing for algebraic cycles”, J. Pure Appl. Algebra, 34:2–3 (1984), 119–145 | DOI | MR | Zbl
[13] R. W. Thomason, Th. Trobaugh, “Higher algebraic $K$-theory of schemes and of derived categories”, The Grothendieck Festschrift, vol. III, Progr. Math., 88, Birkhäuser, Boston, MA, 1990, 247–435 | MR | Zbl
[14] A. Yekutieli, “The action of adeles on the residue complex”, Comm. Algebra, 31:8 (2003), 4131–4151 | DOI | MR | Zbl
[15] S. Bloch, A. Ogus, “Gersten's conjecture and the homology of schemes”, Ann. Sci. École Norm. Sup. (4), 7 (1974), 181–202 | MR | Zbl
[16] M. Rost, “Chow groups with coefficients”, Doc. Math., 1:16 (1996), 319–393 | MR | Zbl
[17] D. V. Osipov, “Adele constructions of direct images of differentials and symbols”, Sb. Math., 188:5 (1997), 697–723 | DOI | MR | Zbl
[18] W. Fulton, Intersection theory, Ergeb. Math. Grenzgeb. (3), 2, Springer-Verlag, Berlin, 1984 | MR | MR | Zbl
[19] H. Gillet, “Comparison of $K$-theory spectral sequences, with applications”, Algebraic $K$-theory (Evanston, IL 1980), Lecture Notes in Math., 854, Springer-Verlag, Berlin–New York, 1981, 141–167 | DOI | MR | Zbl
[20] D. R. Grayson, “Products in $K$-theory and intersecting algebraic cycles”, Invent. Math., 47:1 (1978), 71–83 | DOI | MR | Zbl
[21] A. N. Parshin, “Chern classes, adèles and $L$-functions”, J. Reine Angew. Math., 341 (1983), 174–192 | MR | Zbl
[22] V. G. Lomadze, “On the intersection index of divisors”, Math. USSR-Izv., 17:2 (1981), 343–352 | DOI | MR | Zbl | Zbl
[23] S. Bloch, “Algebraic $K$-theory and crystalline cohomology”, Inst. Hautes Études Sci. Publ. Math., 47 (1977), 187–268 | DOI | MR | Zbl
[24] A. A. Suslin, “Homology of $GL_n$, characteristic classes and Milnor $K$-theory”, Algebraic $K$-theory, number theory, geometry and analysis (Bielefeld, 1982), Lecture Notes in Math., 1046, Springer-Verlag, Berlin, 1984, 357–375 | DOI | MR | Zbl
[25] J. Milnor, “On spaces having the homotopy type of $CW$-complexes”, Trans. Amer. Math. Soc., 90:2 (1959), 272–280 | DOI | MR | Zbl
[26] V. Srinivas, Algebraic $K$-theory, Progr. Math., 90, Birkhäuser, Boston, MA, 1996 | MR | Zbl
[27] G. W. Whitehead, Elements of homotopy theory, Grad. Texts in Math., 61, Springer-Verlag, New York–Berlin, 1978 | MR | Zbl
[28] S. Bloch, “Algebraic cycles and higher $K$-theory”, Adv. in Math., 61:3 (1986), 267–304 | DOI | MR | Zbl
[29] M. Levine, Mixed motives, Math. Surveys Monogr., 57, Amer. Math. Soc., Providence, RI, 1998 | MR | Zbl
[30] S. Bloch, “Torsion algebraic cycles and a theorem of Roitman”, Compositio Math., 39:1 (1979), 107–127 | MR | Zbl
[31] A. A. Rojtman, “The torsion in the groups of $0$-cycles modulo rational equivalence”, Ann. of Math. (2), 111:3 (1980), 553–569 | DOI | MR | Zbl
[32] C. Deninger, Higher order operations in Deligne cohomology, Schriftenreihe Math. Inst. Univ. Munster 3. Ser., 3, Univ. Münster, Münster, 1991 | MR | Zbl