An adelic resolution for homology sheaves
Izvestiya. Mathematics , Tome 72 (2008) no. 6, pp. 1187-1252

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose a generalization of the ordinary idele group by constructing certain adelic complexes for sheaves of $K$-groups on schemes. Such complexes are defined for any abelian sheaf on a scheme. We focus on the case when the sheaf is associated with the presheaf of a homology theory with certain natural axioms satisfied, in particular, by $K$-theory. In this case it is proved that the adelic complex provides a flabby resolution for this sheaf on smooth varieties over an infinite perfect field and that the natural morphism to the Gersten complex is a quasi-isomorphism. The main advantage of the new adelic resolution is that it is contravariant and multiplicative. In particular, this enables us to reprove that the intersection in Chow groups coincides (up to a sign) with the natural product in the corresponding $K$-cohomology groups. Also, we show that the Weil pairing can be expressed as a Massey triple product in $K$-cohomology groups with certain indices.
@article{IM2_2008_72_6_a5,
     author = {S. O. Gorchinskiy},
     title = {An adelic resolution for homology sheaves},
     journal = {Izvestiya. Mathematics },
     pages = {1187--1252},
     publisher = {mathdoc},
     volume = {72},
     number = {6},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2008_72_6_a5/}
}
TY  - JOUR
AU  - S. O. Gorchinskiy
TI  - An adelic resolution for homology sheaves
JO  - Izvestiya. Mathematics 
PY  - 2008
SP  - 1187
EP  - 1252
VL  - 72
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2008_72_6_a5/
LA  - en
ID  - IM2_2008_72_6_a5
ER  - 
%0 Journal Article
%A S. O. Gorchinskiy
%T An adelic resolution for homology sheaves
%J Izvestiya. Mathematics 
%D 2008
%P 1187-1252
%V 72
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2008_72_6_a5/
%G en
%F IM2_2008_72_6_a5
S. O. Gorchinskiy. An adelic resolution for homology sheaves. Izvestiya. Mathematics , Tome 72 (2008) no. 6, pp. 1187-1252. http://geodesic.mathdoc.fr/item/IM2_2008_72_6_a5/