Boundaries of braid groups and the Markov--Ivanovsky normal form
Izvestiya. Mathematics , Tome 72 (2008) no. 6, pp. 1161-1186

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe random walk boundaries (in particular, the Poisson–Furstenberg, or PF-, boundary) for a large family of groups in terms of the hyperbolic boundary of a special normal free subgroup. We prove that almost all the trajectories of a random walk (with respect to an arbitrary non-degenerate measure on the group) converge to points of that boundary. This yields the stability (in the sense of [6]) of the so-called Markov–Ivanovsky normal form [12] for braids.
@article{IM2_2008_72_6_a4,
     author = {A. M. Vershik and A. V. Malyutin},
     title = {Boundaries of braid groups and the {Markov--Ivanovsky} normal form},
     journal = {Izvestiya. Mathematics },
     pages = {1161--1186},
     publisher = {mathdoc},
     volume = {72},
     number = {6},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2008_72_6_a4/}
}
TY  - JOUR
AU  - A. M. Vershik
AU  - A. V. Malyutin
TI  - Boundaries of braid groups and the Markov--Ivanovsky normal form
JO  - Izvestiya. Mathematics 
PY  - 2008
SP  - 1161
EP  - 1186
VL  - 72
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2008_72_6_a4/
LA  - en
ID  - IM2_2008_72_6_a4
ER  - 
%0 Journal Article
%A A. M. Vershik
%A A. V. Malyutin
%T Boundaries of braid groups and the Markov--Ivanovsky normal form
%J Izvestiya. Mathematics 
%D 2008
%P 1161-1186
%V 72
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2008_72_6_a4/
%G en
%F IM2_2008_72_6_a4
A. M. Vershik; A. V. Malyutin. Boundaries of braid groups and the Markov--Ivanovsky normal form. Izvestiya. Mathematics , Tome 72 (2008) no. 6, pp. 1161-1186. http://geodesic.mathdoc.fr/item/IM2_2008_72_6_a4/