Boundaries of braid groups and the Markov--Ivanovsky normal form
Izvestiya. Mathematics , Tome 72 (2008) no. 6, pp. 1161-1186.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe random walk boundaries (in particular, the Poisson–Furstenberg, or PF-, boundary) for a large family of groups in terms of the hyperbolic boundary of a special normal free subgroup. We prove that almost all the trajectories of a random walk (with respect to an arbitrary non-degenerate measure on the group) converge to points of that boundary. This yields the stability (in the sense of [6]) of the so-called Markov–Ivanovsky normal form [12] for braids.
@article{IM2_2008_72_6_a4,
     author = {A. M. Vershik and A. V. Malyutin},
     title = {Boundaries of braid groups and the {Markov--Ivanovsky} normal form},
     journal = {Izvestiya. Mathematics },
     pages = {1161--1186},
     publisher = {mathdoc},
     volume = {72},
     number = {6},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2008_72_6_a4/}
}
TY  - JOUR
AU  - A. M. Vershik
AU  - A. V. Malyutin
TI  - Boundaries of braid groups and the Markov--Ivanovsky normal form
JO  - Izvestiya. Mathematics 
PY  - 2008
SP  - 1161
EP  - 1186
VL  - 72
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2008_72_6_a4/
LA  - en
ID  - IM2_2008_72_6_a4
ER  - 
%0 Journal Article
%A A. M. Vershik
%A A. V. Malyutin
%T Boundaries of braid groups and the Markov--Ivanovsky normal form
%J Izvestiya. Mathematics 
%D 2008
%P 1161-1186
%V 72
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2008_72_6_a4/
%G en
%F IM2_2008_72_6_a4
A. M. Vershik; A. V. Malyutin. Boundaries of braid groups and the Markov--Ivanovsky normal form. Izvestiya. Mathematics , Tome 72 (2008) no. 6, pp. 1161-1186. http://geodesic.mathdoc.fr/item/IM2_2008_72_6_a4/

[1] V. A. Kaimanovich, H. Masur, “The Poisson boundary of the mapping class group”, Invent. Math., 125:2 (1996), 221–264 | DOI | MR | Zbl

[2] B. Farb, H. Masur, “Superregidity and mapping class groups”, Topology, 37:6 (1998), 1169–1176 | DOI | MR | Zbl

[3] H. Furstenberg, “A Poisson formula for semi-simple Lie groups”, Ann. of Math. (2), 77:2 (1963), 335–386 | DOI | MR | Zbl

[4] H. Furstenberg, “Random walks and discrete subgroups of Lie groups”, Adv. Probab. Related Topics, vol. 1, Dekker, New York, 1971, 1–63 | MR | Zbl

[5] H. Furstenberg, “Boundary theory and stochastic processes on homogeneous spaces”, Harmonic analysis on homogeneous spaces (Proc. Sympos. Pure Math., Vol. XXVI, Williamstown, MA, 1972), Amer. Math. Soc., Providence, RI, 1973, 193–229 | MR | Zbl

[6] A. M. Vershik, “Dynamic theory of growth in groups: Entropy, boundaries, examples”, Russian Math. Surveys, 55:4 (2000), 667–733 | DOI | MR | Zbl

[7] A. M. Vershik, S. Nechaev, R. Bikbov, “Statistical properties of locally free groups with applications to braid groups and growth of random heaps”, Comm. Math. Phys., 212:2 (2000), 469–501 | DOI | MR | Zbl

[8] A. V. Malyutin, “The Poisson–Furstenberg boundary of the locally free group”, J. Math. Sci. (N. Y.), 129:2 (2005), 3787–3795 | DOI | MR

[9] V. A. Kaimanovich, “An entropy criterion of maximality for the boundary of random walks on discrete groups”, Soviet Math. Dokl., 31:1 (1985), 193–197 | MR | Zbl

[10] V. A. Kaimanovich, A. M. Vershik, “Random walks on discrete groups: boundary and entropy”, Ann. Probab., 11:3 (1983), 457–490 | DOI | MR | Zbl

[11] Y. Derriennic, “Entropie, théorèmes limites et marches aléatoires”, Probability measures on groups, vol. VIII (Oberwolfach, 1985), Lecture Notes in Math., 1210, Springer-Verlag, Berlin, 1986, 241–284 | DOI | MR | Zbl

[12] A. A. Markov, “Osnovy algebraicheskoi teorii kos”, Tr. MIAN, 16, Izd-vo Akademii nauk SSSR, M.–L., 1945, 3–54 | MR | Zbl

[13] A. V. Malyutin, “Fast algorithms for identification and comparison of braids”, J. Math. Sci. (N. Y.), 119:1 (2004), 101–111 | DOI | MR | Zbl

[14] X. Bressaud, “A normal form for braid groups”, J. Knot Theory Ramifications, 17:6 (2008), 697–732 | DOI

[15] P. Dehornoy, I. Dynnikov, D. Rolfsen, B. Wiest, “Why are braids orderable?”, Panoramas et Synthèses, 14, Soc. Mathématique de France, Paris, 2002 | MR | Zbl

[16] D. B. A. Epstein, J. W. Cannon, D. F. Holt, S. V. F. Levy, M. S. Paterson, W. P. Thurston, Word processing in groups, Jones and Bartlett Publ., Boston, MA, 1992 | MR | Zbl

[17] J. Birman, K. H. Ko, S. J. Lee, “A new approach to the word and conjugacy problems in the braid groups”, Adv. Math., 139:2 (1998), 322–353 | DOI | MR | Zbl

[18] P. Dehornoy, “Alternating normal forms for braids and locally Garside monoids”, J. Pure Appl. Algebra, 212:11 (2008), 2413–2439 | DOI

[19] V. V. Vershinin, “Braids, their properties and generalizations”, Handbook of algebra, vol. 4, North-Holland, Amsterdam, 2006, 427–465

[20] M. Gromov, “Hyperbolic groups”, Essays in group theory, Math. Sci. Res. Inst. Publ., 8, Springer-Verlag, New York, 1987, 75–263 | MR | Zbl

[21] R. C. Lyndon, P. E. Schupp, Combinatorial group theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, 89, Springer-Verlag, Berlin–Heidelberg–New York, 1977 | MR | MR | Zbl | Zbl