Structure of biprojective Banach algebras with non-trivial radical
Izvestiya. Mathematics , Tome 72 (2008) no. 6, pp. 1111-1140.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the structure of biprojective Banach algebras. In contrast to earlier results of Selivanov, we admit the presence of nilpotent ideals in the algebras under consideration, and the structure theorem covers almost all known examples. As a corollary, we obtain a complete classification of finite-dimensional biprojective Banach algebras. A major role in the proof is played by the approximation property for certain Banach spaces related to the algebras under consideration.
@article{IM2_2008_72_6_a2,
     author = {O. Yu. Aristov},
     title = {Structure of biprojective {Banach} algebras with non-trivial radical},
     journal = {Izvestiya. Mathematics },
     pages = {1111--1140},
     publisher = {mathdoc},
     volume = {72},
     number = {6},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2008_72_6_a2/}
}
TY  - JOUR
AU  - O. Yu. Aristov
TI  - Structure of biprojective Banach algebras with non-trivial radical
JO  - Izvestiya. Mathematics 
PY  - 2008
SP  - 1111
EP  - 1140
VL  - 72
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2008_72_6_a2/
LA  - en
ID  - IM2_2008_72_6_a2
ER  - 
%0 Journal Article
%A O. Yu. Aristov
%T Structure of biprojective Banach algebras with non-trivial radical
%J Izvestiya. Mathematics 
%D 2008
%P 1111-1140
%V 72
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2008_72_6_a2/
%G en
%F IM2_2008_72_6_a2
O. Yu. Aristov. Structure of biprojective Banach algebras with non-trivial radical. Izvestiya. Mathematics , Tome 72 (2008) no. 6, pp. 1111-1140. http://geodesic.mathdoc.fr/item/IM2_2008_72_6_a2/

[1] S. Mac Lane, Homology, Die Grundlehren der mathematischen Wissenschaften, 114, Springer-Verlag, Berlin–Göttingen–Heidelberg; Academic Press, New York, 1963 | MR | Zbl | Zbl

[2] A. Ya. Khelemskii, Gomologicheskie kharakteristiki banakhovykh algebr, Dis. ... dokt. fiz.-matem. nauk, MGU, M., 1973

[3] A. Ja. Helemskiĭ, “On a method for calculating and estimating the global homological dimension of Banach algebras”, Math. USSR-Sb., 16:1 (1972), 125–138 | DOI | MR | Zbl | Zbl

[4] Ju. V. Selivanov, “Biprojective Banach algebras”, Math. USSR-Izv., 15:2 (1980), 387–399 | DOI | MR | Zbl | Zbl

[5] Yu. V. Selivanov, “Coretraction problems and homological properties of Banach algebras”, Topological homology, Nova Sci. Publ., Huntington, NY, 2000, 145–199 | MR | Zbl

[6] Yu. V. Selivanov, “Fréchet algebras of global dimension zero”, Algebra, Proc. of the III international conference on algebra (Krasnoyarsk, 1993), de Gruyter, Berlin, 1996, 225–236 | MR | Zbl

[7] A. Ya. Khelemskii, Gomologiya v banakhovykh i topologicheskikh algebrakh, Izd-vo Mosk. un-ta, M., 1986 | MR | Zbl

[8] Yu. V. Selivanov, Kogomologii banakhovykh i blizkikh k nim algebr, Dis. ... dokt. fiz.-matem. nauk, MGU, M., 2002

[9] Yu. V. Selivanov, “Cohomological characterizations of biprojective and biflat Banach algebras”, Monatsh. Math., 128:1 (1999), 35–60 | DOI | MR | Zbl

[10] A. Ya. Khelemskii, Banakhovy i polinormirovannye algebry. Obschaya teoriya, predstavleniya, gomologii, Nauka, M., 1989 | MR

[11] Th. W. Palmer, Banach algebras and the general theory of *-algebras. Vol. I: Algebras and Banach algebras, Encyclopedia Math. Appl., 49, Cambridge Univ. Press, Cambridge, 1994 | MR | Zbl

[12] E. Hewitt, K. A. Ross, Abstract harmonic analysis. Vol. II: Structure and analysis for compact groups. Analysis on locally compact Abelian groups, Die Grundlehren der mathematischen Wissenschaften, 152, Springer-Verlag, Berlin–Heidelberg–New York, 1970 | MR | MR | Zbl

[13] B. E. Johnson, “A commutative semisimple annihilator Banach algebra which is not dual”, Bull. Amer. Math. Soc., 73 (1967), 407–409 | DOI | MR | Zbl

[14] K. Feis, Algebra: koltsa, moduli i kategorii, t. 1, 2, Mir, M., 1977 ; C. Faith, Algebra: rings, modules and categories. I, Die Grundlehren der mathematischen Wissenschaften, 190, Springer-Verlag, New York–Heidelberg, 1973 ; C. Faith, Algebra. II. Ring theory, Grundlehren der Mathematischen Wissenschaften, 191, Springer-Verlag, Berlin–Heidelberg–New York, 1976 | MR | MR | MR | Zbl | MR | Zbl

[15] F. Kasch, Moduln und Ringe, Mathematische Leitfäden, Teubner, Stuttgart, 1977 | MR | MR | Zbl | Zbl

[16] J. Lambek, Lectures on rings and modules, Blaisdell, Waltham, MA–Toronto, ON–London, 1966 | MR | MR | Zbl | Zbl

[17] A. Defant, K. Floret, Tensor norms and operator ideals, North-Holland Math. Stud., 176, North-Holland, Amsterdam, 1993 | MR | Zbl

[18] Yu. V. Selivanov, “Weak homological bidimension and its values in the class of biflat Banach algebras”, Extracta Math., 11:2 (1996), 348–365 | MR | Zbl

[19] A. Yu. Pirkovskii, Yu. V. Selivanov, “Homologically trivial Fréchet algebras”, Topological algebras and applications, Contemp. Math., 427, Amer. Math. Soc., Providence, RI, 2007, 367–387 | MR | Zbl