Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2008_72_6_a2, author = {O. Yu. Aristov}, title = {Structure of biprojective {Banach} algebras with non-trivial radical}, journal = {Izvestiya. Mathematics }, pages = {1111--1140}, publisher = {mathdoc}, volume = {72}, number = {6}, year = {2008}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2008_72_6_a2/} }
O. Yu. Aristov. Structure of biprojective Banach algebras with non-trivial radical. Izvestiya. Mathematics , Tome 72 (2008) no. 6, pp. 1111-1140. http://geodesic.mathdoc.fr/item/IM2_2008_72_6_a2/
[1] S. Mac Lane, Homology, Die Grundlehren der mathematischen Wissenschaften, 114, Springer-Verlag, Berlin–Göttingen–Heidelberg; Academic Press, New York, 1963 | MR | Zbl | Zbl
[2] A. Ya. Khelemskii, Gomologicheskie kharakteristiki banakhovykh algebr, Dis. ... dokt. fiz.-matem. nauk, MGU, M., 1973
[3] A. Ja. Helemskiĭ, “On a method for calculating and estimating the global homological dimension of Banach algebras”, Math. USSR-Sb., 16:1 (1972), 125–138 | DOI | MR | Zbl | Zbl
[4] Ju. V. Selivanov, “Biprojective Banach algebras”, Math. USSR-Izv., 15:2 (1980), 387–399 | DOI | MR | Zbl | Zbl
[5] Yu. V. Selivanov, “Coretraction problems and homological properties of Banach algebras”, Topological homology, Nova Sci. Publ., Huntington, NY, 2000, 145–199 | MR | Zbl
[6] Yu. V. Selivanov, “Fréchet algebras of global dimension zero”, Algebra, Proc. of the III international conference on algebra (Krasnoyarsk, 1993), de Gruyter, Berlin, 1996, 225–236 | MR | Zbl
[7] A. Ya. Khelemskii, Gomologiya v banakhovykh i topologicheskikh algebrakh, Izd-vo Mosk. un-ta, M., 1986 | MR | Zbl
[8] Yu. V. Selivanov, Kogomologii banakhovykh i blizkikh k nim algebr, Dis. ... dokt. fiz.-matem. nauk, MGU, M., 2002
[9] Yu. V. Selivanov, “Cohomological characterizations of biprojective and biflat Banach algebras”, Monatsh. Math., 128:1 (1999), 35–60 | DOI | MR | Zbl
[10] A. Ya. Khelemskii, Banakhovy i polinormirovannye algebry. Obschaya teoriya, predstavleniya, gomologii, Nauka, M., 1989 | MR
[11] Th. W. Palmer, Banach algebras and the general theory of *-algebras. Vol. I: Algebras and Banach algebras, Encyclopedia Math. Appl., 49, Cambridge Univ. Press, Cambridge, 1994 | MR | Zbl
[12] E. Hewitt, K. A. Ross, Abstract harmonic analysis. Vol. II: Structure and analysis for compact groups. Analysis on locally compact Abelian groups, Die Grundlehren der mathematischen Wissenschaften, 152, Springer-Verlag, Berlin–Heidelberg–New York, 1970 | MR | MR | Zbl
[13] B. E. Johnson, “A commutative semisimple annihilator Banach algebra which is not dual”, Bull. Amer. Math. Soc., 73 (1967), 407–409 | DOI | MR | Zbl
[14] K. Feis, Algebra: koltsa, moduli i kategorii, t. 1, 2, Mir, M., 1977 ; C. Faith, Algebra: rings, modules and categories. I, Die Grundlehren der mathematischen Wissenschaften, 190, Springer-Verlag, New York–Heidelberg, 1973 ; C. Faith, Algebra. II. Ring theory, Grundlehren der Mathematischen Wissenschaften, 191, Springer-Verlag, Berlin–Heidelberg–New York, 1976 | MR | MR | MR | Zbl | MR | Zbl
[15] F. Kasch, Moduln und Ringe, Mathematische Leitfäden, Teubner, Stuttgart, 1977 | MR | MR | Zbl | Zbl
[16] J. Lambek, Lectures on rings and modules, Blaisdell, Waltham, MA–Toronto, ON–London, 1966 | MR | MR | Zbl | Zbl
[17] A. Defant, K. Floret, Tensor norms and operator ideals, North-Holland Math. Stud., 176, North-Holland, Amsterdam, 1993 | MR | Zbl
[18] Yu. V. Selivanov, “Weak homological bidimension and its values in the class of biflat Banach algebras”, Extracta Math., 11:2 (1996), 348–365 | MR | Zbl
[19] A. Yu. Pirkovskii, Yu. V. Selivanov, “Homologically trivial Fréchet algebras”, Topological algebras and applications, Contemp. Math., 427, Amer. Math. Soc., Providence, RI, 2007, 367–387 | MR | Zbl