Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2008_72_6_a1, author = {Yu. M. Aleksentsev}, title = {The {Hilbert} polynomial and linear forms in the logarithms of algebraic numbers}, journal = {Izvestiya. Mathematics }, pages = {1063--1110}, publisher = {mathdoc}, volume = {72}, number = {6}, year = {2008}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2008_72_6_a1/} }
Yu. M. Aleksentsev. The Hilbert polynomial and linear forms in the logarithms of algebraic numbers. Izvestiya. Mathematics , Tome 72 (2008) no. 6, pp. 1063-1110. http://geodesic.mathdoc.fr/item/IM2_2008_72_6_a1/
[1] A. Baker, “Linear forms in the logarithms of algebraic numbers. I”, Mathematika, 13 (1966), 204–216 ; II, 14 (1967), 102–107 ; III, 14 (1967), 220–228 ; IV, 15 (1968), 204–216 | MR | Zbl | Zbl | Zbl | MR | Zbl
[2] N. I. Fel'dman, “Improved estimate for a linear form of the logarithms of algebraic numbers”, Math. USSR-Izv., 6:3 (1968), 393–406 | DOI | MR | Zbl
[3] A. O. Gelfond, “O priblizhenii algebraicheskimi chislami otnosheniya logarifmov dvukh algebraicheskikh chisel”, Izv. AN SSSR. Ser. matem., 3:5–6 (1939), 509–518 | MR | Zbl
[4] G. Wüstholz, “A new approach to Baker's theorem on linear forms in logarithms. I, II”, Diophantine problems and transcendence theory (Bonn, 1985), Lecture Notes in Math., 1290, Springer-Verlag, Berlin–Heidelberg, 1987, 189–202, 203–211 ; III, New advances in transcendence theory (Durham, 1986), Cambridge Univ. Press, Cambridge, 1988, 399–410 | DOI | MR | Zbl | MR | Zbl
[5] P. Philippon, M. Waldschmidt, “Lower bounds for linear forms in logarithms”, New advances in transcendence theory (Durham, 1986), Cambridge Univ. Press., Cambridge, 1988, 280–312 | MR | Zbl
[6] M. Waldschmidt, Diophantine approximation on linear algebraic groups. Transcendence properties of the exponential function in several variables, Grundlehren Math. Wiss., 326, Springer-Verlag, Berlin, 2000 | MR | Zbl
[7] E. M. Matveev, “An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers”, Izv. Math., 62:4 (1998), 723–772 | DOI | MR | Zbl
[8] E. M. Matveev, “An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers. II”, Izv. Math., 64:6 (2000), 1217–1269 | DOI | MR | Zbl
[9] A. O. Gelfond, Transcendental and algebraic numbers, Dover, New York, 1960 | MR | MR | Zbl | Zbl
[10] A. Baker, G. Wüstholz, “Logarithmic forms and group varieties”, J. Reine Angew. Math., 442 (1993), 19–62 | MR | Zbl
[11] P. Philippon, “Lemmes de zéros dans les groupes algébriques commutatifs”, Bull. Soc. Math. France, 114:3 (1986), 355–383 ; Addendum, 115:3 (1987), 397–398 | MR | Zbl | MR | Zbl
[12] W. V. D. Hodge, D. Pedoe, Methods of algebraic geometry, Cambridge Univ. Press, Cambridge; Macmillan, New York, 1947–1954 | MR | MR | MR | Zbl
[13] D. Bertrand, “Duality on tori and multiplicative dependence relations”, J. Aust. Math. Soc. Ser. A, 62:2 (1997), 198–216 | DOI | MR | Zbl
[14] J. D. Vaaler, “A geometric inequality with applications to linear forms”, Pacific J. Math., 83:2 (1979), 543–553 | MR | Zbl
[15] J. W. S. Cassels, An introduction to the geometry of numbers, Grundlehren Math. Wiss., 99, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1959 | MR | Zbl
[16] E. Bombieri, J. D. Vaaler, “On Siegel's lemma”, Invent. Math., 73:1 (1983), 11–32 | DOI | MR | Zbl
[17] N. I. Fel'dman, “Approximation of the logarithms of algebraic numbers by algebraic numbers”, Amer. Math. Soc. Transl. Ser. 2, 58, Amer. Math. Soc., Providence, RI, 1966, 125–142 | MR | Zbl
[18] N. I. Fel'dman, “On the measure of transcendence of $\pi$”, Amer. Math. Soc. Transl. Ser. 2, 58, Amer. Math. Soc., Providence, RI, 1966, 110–124 | MR | Zbl
[19] E. M. Matveeev, “On the arithmetic properties of the values of generalized binomial polynomials”, Math. Notes, 54:4 (1993), 1031–1036 | DOI | MR | Zbl
[20] M. Valdshmidt, Yu. V. Nesterenko, “O priblizhenii algebraicheskimi chislami znachenii eksponentsialnoi funktsii i logarifma”, Matem. zapiski, 2, Nauka, M., 1996, 23–41
[21] T. Loher, D. Masser, “Uniformly counting points of bounded height”, Acta Arith., 111:3 (2004), 277–297 | DOI | MR | Zbl
[22] Yu. M. Aleksentsev, “Index of lattices and Hilbert polynomials”, Math. Notes, 80:3–4 (2006), 313–317 | DOI | MR | Zbl
[23] E. M. Matveev, “On the successive minima of the extended logarithmic height of algebraic numbers”, Sb. Math., 190:3 (1999), 407–425 | DOI | MR | Zbl
[24] R. Tijdeman, “On the equation of Catalan”, Acta Arith., 29:2 (1976), 197–209 | MR | Zbl