The Hilbert polynomial and linear forms in the logarithms of algebraic numbers
Izvestiya. Mathematics , Tome 72 (2008) no. 6, pp. 1063-1110.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove a new estimate for homogeneous linear forms with integer coefficients in the logarithms of algebraic numbers. We obtain a qualitative improvement of the estimate depending on the coefficients of the linear form and the best value of the constant in the estimate in the case when the number of logarithms is not too large.
@article{IM2_2008_72_6_a1,
     author = {Yu. M. Aleksentsev},
     title = {The {Hilbert} polynomial and linear forms in the logarithms of algebraic numbers},
     journal = {Izvestiya. Mathematics },
     pages = {1063--1110},
     publisher = {mathdoc},
     volume = {72},
     number = {6},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2008_72_6_a1/}
}
TY  - JOUR
AU  - Yu. M. Aleksentsev
TI  - The Hilbert polynomial and linear forms in the logarithms of algebraic numbers
JO  - Izvestiya. Mathematics 
PY  - 2008
SP  - 1063
EP  - 1110
VL  - 72
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2008_72_6_a1/
LA  - en
ID  - IM2_2008_72_6_a1
ER  - 
%0 Journal Article
%A Yu. M. Aleksentsev
%T The Hilbert polynomial and linear forms in the logarithms of algebraic numbers
%J Izvestiya. Mathematics 
%D 2008
%P 1063-1110
%V 72
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2008_72_6_a1/
%G en
%F IM2_2008_72_6_a1
Yu. M. Aleksentsev. The Hilbert polynomial and linear forms in the logarithms of algebraic numbers. Izvestiya. Mathematics , Tome 72 (2008) no. 6, pp. 1063-1110. http://geodesic.mathdoc.fr/item/IM2_2008_72_6_a1/

[1] A. Baker, “Linear forms in the logarithms of algebraic numbers. I”, Mathematika, 13 (1966), 204–216 ; II, 14 (1967), 102–107 ; III, 14 (1967), 220–228 ; IV, 15 (1968), 204–216 | MR | Zbl | Zbl | Zbl | MR | Zbl

[2] N. I. Fel'dman, “Improved estimate for a linear form of the logarithms of algebraic numbers”, Math. USSR-Izv., 6:3 (1968), 393–406 | DOI | MR | Zbl

[3] A. O. Gelfond, “O priblizhenii algebraicheskimi chislami otnosheniya logarifmov dvukh algebraicheskikh chisel”, Izv. AN SSSR. Ser. matem., 3:5–6 (1939), 509–518 | MR | Zbl

[4] G. Wüstholz, “A new approach to Baker's theorem on linear forms in logarithms. I, II”, Diophantine problems and transcendence theory (Bonn, 1985), Lecture Notes in Math., 1290, Springer-Verlag, Berlin–Heidelberg, 1987, 189–202, 203–211 ; III, New advances in transcendence theory (Durham, 1986), Cambridge Univ. Press, Cambridge, 1988, 399–410 | DOI | MR | Zbl | MR | Zbl

[5] P. Philippon, M. Waldschmidt, “Lower bounds for linear forms in logarithms”, New advances in transcendence theory (Durham, 1986), Cambridge Univ. Press., Cambridge, 1988, 280–312 | MR | Zbl

[6] M. Waldschmidt, Diophantine approximation on linear algebraic groups. Transcendence properties of the exponential function in several variables, Grundlehren Math. Wiss., 326, Springer-Verlag, Berlin, 2000 | MR | Zbl

[7] E. M. Matveev, “An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers”, Izv. Math., 62:4 (1998), 723–772 | DOI | MR | Zbl

[8] E. M. Matveev, “An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers. II”, Izv. Math., 64:6 (2000), 1217–1269 | DOI | MR | Zbl

[9] A. O. Gelfond, Transcendental and algebraic numbers, Dover, New York, 1960 | MR | MR | Zbl | Zbl

[10] A. Baker, G. Wüstholz, “Logarithmic forms and group varieties”, J. Reine Angew. Math., 442 (1993), 19–62 | MR | Zbl

[11] P. Philippon, “Lemmes de zéros dans les groupes algébriques commutatifs”, Bull. Soc. Math. France, 114:3 (1986), 355–383 ; Addendum, 115:3 (1987), 397–398 | MR | Zbl | MR | Zbl

[12] W. V. D. Hodge, D. Pedoe, Methods of algebraic geometry, Cambridge Univ. Press, Cambridge; Macmillan, New York, 1947–1954 | MR | MR | MR | Zbl

[13] D. Bertrand, “Duality on tori and multiplicative dependence relations”, J. Aust. Math. Soc. Ser. A, 62:2 (1997), 198–216 | DOI | MR | Zbl

[14] J. D. Vaaler, “A geometric inequality with applications to linear forms”, Pacific J. Math., 83:2 (1979), 543–553 | MR | Zbl

[15] J. W. S. Cassels, An introduction to the geometry of numbers, Grundlehren Math. Wiss., 99, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1959 | MR | Zbl

[16] E. Bombieri, J. D. Vaaler, “On Siegel's lemma”, Invent. Math., 73:1 (1983), 11–32 | DOI | MR | Zbl

[17] N. I. Fel'dman, “Approximation of the logarithms of algebraic numbers by algebraic numbers”, Amer. Math. Soc. Transl. Ser. 2, 58, Amer. Math. Soc., Providence, RI, 1966, 125–142 | MR | Zbl

[18] N. I. Fel'dman, “On the measure of transcendence of $\pi$”, Amer. Math. Soc. Transl. Ser. 2, 58, Amer. Math. Soc., Providence, RI, 1966, 110–124 | MR | Zbl

[19] E. M. Matveeev, “On the arithmetic properties of the values of generalized binomial polynomials”, Math. Notes, 54:4 (1993), 1031–1036 | DOI | MR | Zbl

[20] M. Valdshmidt, Yu. V. Nesterenko, “O priblizhenii algebraicheskimi chislami znachenii eksponentsialnoi funktsii i logarifma”, Matem. zapiski, 2, Nauka, M., 1996, 23–41

[21] T. Loher, D. Masser, “Uniformly counting points of bounded height”, Acta Arith., 111:3 (2004), 277–297 | DOI | MR | Zbl

[22] Yu. M. Aleksentsev, “Index of lattices and Hilbert polynomials”, Math. Notes, 80:3–4 (2006), 313–317 | DOI | MR | Zbl

[23] E. M. Matveev, “On the successive minima of the extended logarithmic height of algebraic numbers”, Sb. Math., 190:3 (1999), 407–425 | DOI | MR | Zbl

[24] R. Tijdeman, “On the equation of Catalan”, Acta Arith., 29:2 (1976), 197–209 | MR | Zbl