Asymptotic behaviour of the first and second moments for the number of steps in the Euclidean algorithm
Izvestiya. Mathematics , Tome 72 (2008) no. 5, pp. 1023-1059
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove asymptotic formulae with two significant terms for the expectation
and variance of the random variable $s(c/d)$ when the variables $c$ and $d$
range over the set $1\leq c\leq d\leq R$ and $R\to\infty$, where
$s(c,d)=s(c/d)$ is the number of steps in the Euclidean algorithm applied
to the numbers $c$ and $d$.
@article{IM2_2008_72_5_a5,
author = {A. V. Ustinov},
title = {Asymptotic behaviour of the first and second moments for the number of steps in the {Euclidean} algorithm},
journal = {Izvestiya. Mathematics },
pages = {1023--1059},
publisher = {mathdoc},
volume = {72},
number = {5},
year = {2008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2008_72_5_a5/}
}
TY - JOUR AU - A. V. Ustinov TI - Asymptotic behaviour of the first and second moments for the number of steps in the Euclidean algorithm JO - Izvestiya. Mathematics PY - 2008 SP - 1023 EP - 1059 VL - 72 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2008_72_5_a5/ LA - en ID - IM2_2008_72_5_a5 ER -
A. V. Ustinov. Asymptotic behaviour of the first and second moments for the number of steps in the Euclidean algorithm. Izvestiya. Mathematics , Tome 72 (2008) no. 5, pp. 1023-1059. http://geodesic.mathdoc.fr/item/IM2_2008_72_5_a5/