Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2008_72_5_a4, author = {A. A. Tolstonogov}, title = {Control systems of subdifferential type depending on a parameter}, journal = {Izvestiya. Mathematics }, pages = {985--1022}, publisher = {mathdoc}, volume = {72}, number = {5}, year = {2008}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2008_72_5_a4/} }
A. A. Tolstonogov. Control systems of subdifferential type depending on a parameter. Izvestiya. Mathematics , Tome 72 (2008) no. 5, pp. 985-1022. http://geodesic.mathdoc.fr/item/IM2_2008_72_5_a4/
[1] H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Mathematics Studies, 5, North-Holland, Amsterdam–London; Elsevier, New York, 1973 | MR | Zbl
[2] G. Aronsson, L. C. Evans, Y. Wu, “Fast/slow diffusion and growing sandpiles”, J. Differential Equations, 131:2 (1996), 304–335 | DOI | MR | Zbl
[3] J. W. Barrett, L. Prigozhin, “Bean's critical state model as the $p\to\infty$ limit of an evolutionary $p$-Laplacian equation”, Nonlinear Anal., 42:6 (2000), 977–993 | DOI | MR | Zbl
[4] H. M. Yin, “On a $p$-Laplacian type of evolution system and applications to the Bean model in the type-II superconductivity theory”, Quart. Appl. Math., 59:1 (2001), 47–66 | MR | Zbl
[5] P. Krejčí, J. Sprekels, “Phase-field systems for multi-dimensional Prandtl–Ishlinskii operators with non-polyhedral characteristics”, Math. Methods Appl. Sci., 25:4 (2002), 309–325 | DOI | MR | Zbl
[6] N. Kenmochi, J. Sprekels, “Phase-field systems with vectorial order parameters including diffusional hysteresis effects”, Comm. Pure. Appl. Anal., 1:4 (2002), 495–511 | DOI | MR | Zbl
[7] P. Krejčí, J. Sprekels, “Parabolic regularization of differential inclusions and the stop operator”, Interfaces Free Bound., 4:4 (2002), 423–435 | MR | Zbl
[8] K. Kuratowski, Topology, vol. II, Academic Press, New York–London; Państwowe Wydawnictwo Naukowe Polish Scientific Publishers, Warsaw, 1968 | MR | MR
[9] H. Attouch, “Familles d'opérateurs maximaux monotones et mesurabilité”, Ann. Mat. Pura Appl. (4), 120:1 (1979), 35–111 | DOI | MR | Zbl
[10] C. J. Himmelberg, “Measurable relation”, Fund. Math., 87 (1975), 53–72 | MR | Zbl
[11] H. Attouch, Variational convergence for functions and operators, Appl. Math. Ser., Pitman, Boston, MA, 1984 | MR | Zbl
[12] E. Michael, “Continuous selections. I”, Ann. of Math. (2), 63:2 (1956), 361–382 | DOI | MR | Zbl
[13] N. Kenmochi, “Solvability of nonlinear evolution equations with time-dependent constraints and applications”, Bull. Fac. Educ. Chiba Univ., 30 (1981), 1–87 | Zbl
[14] Y. Yamada, “On evolution equations generated by subdifferential operators”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 23:3 (1976), 491–515 | MR | Zbl
[15] A. N. Filatov, L. V. Sharova, Integralnye neravenstva i teoriya nelineinykh kolebanii, Nauka, M., 1976 | MR | Zbl
[16] A. A. Tolstonogov, D. A. Tolstonogov, “$L_p$-continuous extreme selectors of multifunctions with decomposable values: existence theorems”, Set-Valued Anal., 4:2 (1996), 173–203 | DOI | MR | Zbl
[17] A. A. Tolstonogov, “$L_p$-continuous selectors of fixed points of multivalued mappings with decomposable values. I. Existence theorems”, Siberian Math. J., 40:3 (1999), 595–607 | DOI | MR | Zbl
[18] A. A. Tolstonogov, “$L_p$-continuous selectors of fixed points of multivalued mappings with decomposable values. III. Applications”, Siberian Math. J., 40:6 (1999), 1173–1187 | DOI | MR | Zbl
[19] A. A. Tolstonogov, “On solutions of an evolution control system depending on parameters”, Sb. Math., 194:9 (2003), 1383–1409 | DOI | MR | Zbl
[20] F. Hiai, H. Umegaki, “Integrals, conditional expectations, and martingales of multivalued functions”, J. Multivariate Anal., 7:1 (1977), 149–182 | DOI | MR | Zbl
[21] H. Gajewski, K. Gröger, K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Mathematische Lehrbücher und Monographien. II. Abteilung, 38, Akademie-Verlag, Berlin, 1974 | MR | MR | Zbl
[22] D. Kinderlehrer, G. Stampacchia, An introduction to variational inequalities and their applications, Pure Appl. Math., 88, Academic Press, New York–London, 1980 | MR | MR | Zbl | Zbl
[23] O. V. Besov, V. P. Ilin, S. M. Nikolskii, Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1996 ; O. V. Besov, V. P. Il'in, S. M. Nikol'skii, Integral representations of functions and imbedding theorems, Vol. I, Scripta Series in Mathematics, Wiley, New York, 1978 ; Vol. II, 1979 | MR | Zbl | Zbl | Zbl
[24] V. Barbu, Optimal control of variational inequalities, Res. Notes in Math., 100, Pitman, Boston, MA, 1984 | MR | Zbl
[25] A. A. Tolstonogov, “Properties of the set of admissible “state–control” pairs for first-order evolution control systems”, Izv. Math., 65:3 (2001), 617–640 | DOI | MR | Zbl