Control systems of subdifferential type depending on a parameter
Izvestiya. Mathematics , Tome 72 (2008) no. 5, pp. 985-1022.

Voir la notice de l'article provenant de la source Math-Net.Ru

In a separable Hilbert space, we consider a control system with a subdifferential operator and a non-linear perturbation of monotonic type. The control is subject to a restriction that is a multi-valued map depending on the phase variables with closed non-convex values in a reflexive separable Banach space. The subdifferential operator, the perturbation, the restriction on the control and the initial condition depend on a parameter. Along with this system we consider a control system with convexified restrictions on the control. By a solution of such a system we mean a pair ‘trajectory–control’. We prove theorems on the existence of selectors that are continuous with respect to the parameter and whose values are solutions of the control system. We establish relations between the sets of selectors continuous with respect to the parameter whose values are solutions of the original system and solutions of the system with convexified restrictions on the control. We deduce from these relations various topological properties of the sets of solutions. We apply the results obtained to a control system described by a vector parabolic equation with a small diffusion coefficient in the elliptic term. We prove that solutions of the control system converge to solutions of the limit singular system as the diffusion coefficient tends to zero.
@article{IM2_2008_72_5_a4,
     author = {A. A. Tolstonogov},
     title = {Control systems of subdifferential type depending on a parameter},
     journal = {Izvestiya. Mathematics },
     pages = {985--1022},
     publisher = {mathdoc},
     volume = {72},
     number = {5},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2008_72_5_a4/}
}
TY  - JOUR
AU  - A. A. Tolstonogov
TI  - Control systems of subdifferential type depending on a parameter
JO  - Izvestiya. Mathematics 
PY  - 2008
SP  - 985
EP  - 1022
VL  - 72
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2008_72_5_a4/
LA  - en
ID  - IM2_2008_72_5_a4
ER  - 
%0 Journal Article
%A A. A. Tolstonogov
%T Control systems of subdifferential type depending on a parameter
%J Izvestiya. Mathematics 
%D 2008
%P 985-1022
%V 72
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2008_72_5_a4/
%G en
%F IM2_2008_72_5_a4
A. A. Tolstonogov. Control systems of subdifferential type depending on a parameter. Izvestiya. Mathematics , Tome 72 (2008) no. 5, pp. 985-1022. http://geodesic.mathdoc.fr/item/IM2_2008_72_5_a4/

[1] H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Mathematics Studies, 5, North-Holland, Amsterdam–London; Elsevier, New York, 1973 | MR | Zbl

[2] G. Aronsson, L. C. Evans, Y. Wu, “Fast/slow diffusion and growing sandpiles”, J. Differential Equations, 131:2 (1996), 304–335 | DOI | MR | Zbl

[3] J. W. Barrett, L. Prigozhin, “Bean's critical state model as the $p\to\infty$ limit of an evolutionary $p$-Laplacian equation”, Nonlinear Anal., 42:6 (2000), 977–993 | DOI | MR | Zbl

[4] H. M. Yin, “On a $p$-Laplacian type of evolution system and applications to the Bean model in the type-II superconductivity theory”, Quart. Appl. Math., 59:1 (2001), 47–66 | MR | Zbl

[5] P. Krejčí, J. Sprekels, “Phase-field systems for multi-dimensional Prandtl–Ishlinskii operators with non-polyhedral characteristics”, Math. Methods Appl. Sci., 25:4 (2002), 309–325 | DOI | MR | Zbl

[6] N. Kenmochi, J. Sprekels, “Phase-field systems with vectorial order parameters including diffusional hysteresis effects”, Comm. Pure. Appl. Anal., 1:4 (2002), 495–511 | DOI | MR | Zbl

[7] P. Krejčí, J. Sprekels, “Parabolic regularization of differential inclusions and the stop operator”, Interfaces Free Bound., 4:4 (2002), 423–435 | MR | Zbl

[8] K. Kuratowski, Topology, vol. II, Academic Press, New York–London; Państwowe Wydawnictwo Naukowe Polish Scientific Publishers, Warsaw, 1968 | MR | MR

[9] H. Attouch, “Familles d'opérateurs maximaux monotones et mesurabilité”, Ann. Mat. Pura Appl. (4), 120:1 (1979), 35–111 | DOI | MR | Zbl

[10] C. J. Himmelberg, “Measurable relation”, Fund. Math., 87 (1975), 53–72 | MR | Zbl

[11] H. Attouch, Variational convergence for functions and operators, Appl. Math. Ser., Pitman, Boston, MA, 1984 | MR | Zbl

[12] E. Michael, “Continuous selections. I”, Ann. of Math. (2), 63:2 (1956), 361–382 | DOI | MR | Zbl

[13] N. Kenmochi, “Solvability of nonlinear evolution equations with time-dependent constraints and applications”, Bull. Fac. Educ. Chiba Univ., 30 (1981), 1–87 | Zbl

[14] Y. Yamada, “On evolution equations generated by subdifferential operators”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 23:3 (1976), 491–515 | MR | Zbl

[15] A. N. Filatov, L. V. Sharova, Integralnye neravenstva i teoriya nelineinykh kolebanii, Nauka, M., 1976 | MR | Zbl

[16] A. A. Tolstonogov, D. A. Tolstonogov, “$L_p$-continuous extreme selectors of multifunctions with decomposable values: existence theorems”, Set-Valued Anal., 4:2 (1996), 173–203 | DOI | MR | Zbl

[17] A. A. Tolstonogov, “$L_p$-continuous selectors of fixed points of multivalued mappings with decomposable values. I. Existence theorems”, Siberian Math. J., 40:3 (1999), 595–607 | DOI | MR | Zbl

[18] A. A. Tolstonogov, “$L_p$-continuous selectors of fixed points of multivalued mappings with decomposable values. III. Applications”, Siberian Math. J., 40:6 (1999), 1173–1187 | DOI | MR | Zbl

[19] A. A. Tolstonogov, “On solutions of an evolution control system depending on parameters”, Sb. Math., 194:9 (2003), 1383–1409 | DOI | MR | Zbl

[20] F. Hiai, H. Umegaki, “Integrals, conditional expectations, and martingales of multivalued functions”, J. Multivariate Anal., 7:1 (1977), 149–182 | DOI | MR | Zbl

[21] H. Gajewski, K. Gröger, K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Mathematische Lehrbücher und Monographien. II. Abteilung, 38, Akademie-Verlag, Berlin, 1974 | MR | MR | Zbl

[22] D. Kinderlehrer, G. Stampacchia, An introduction to variational inequalities and their applications, Pure Appl. Math., 88, Academic Press, New York–London, 1980 | MR | MR | Zbl | Zbl

[23] O. V. Besov, V. P. Ilin, S. M. Nikolskii, Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1996 ; O. V. Besov, V. P. Il'in, S. M. Nikol'skii, Integral representations of functions and imbedding theorems, Vol. I, Scripta Series in Mathematics, Wiley, New York, 1978 ; Vol. II, 1979 | MR | Zbl | Zbl | Zbl

[24] V. Barbu, Optimal control of variational inequalities, Res. Notes in Math., 100, Pitman, Boston, MA, 1984 | MR | Zbl

[25] A. A. Tolstonogov, “Properties of the set of admissible “state–control” pairs for first-order evolution control systems”, Izv. Math., 65:3 (2001), 617–640 | DOI | MR | Zbl