ACL and differentiability of a generalization of quasi-conformal maps
Izvestiya. Mathematics , Tome 72 (2008) no. 5, pp. 977-984.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is established that $Q$-homeomorphisms (in the sense of O. Martio) defined in $\mathbb{R}^n$, $n\geqslant2$, are absolutely continuous on lines. Furthermore, they belong to the Sobolev class $W_{\mathrm{loc}}^{1,1}$ and are differentiable almost everywhere for $Q\in L^{1}_{\mathrm{loc}}$.
@article{IM2_2008_72_5_a3,
     author = {R. R. Salimov},
     title = {ACL and differentiability of a generalization of quasi-conformal maps},
     journal = {Izvestiya. Mathematics },
     pages = {977--984},
     publisher = {mathdoc},
     volume = {72},
     number = {5},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2008_72_5_a3/}
}
TY  - JOUR
AU  - R. R. Salimov
TI  - ACL and differentiability of a generalization of quasi-conformal maps
JO  - Izvestiya. Mathematics 
PY  - 2008
SP  - 977
EP  - 984
VL  - 72
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2008_72_5_a3/
LA  - en
ID  - IM2_2008_72_5_a3
ER  - 
%0 Journal Article
%A R. R. Salimov
%T ACL and differentiability of a generalization of quasi-conformal maps
%J Izvestiya. Mathematics 
%D 2008
%P 977-984
%V 72
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2008_72_5_a3/
%G en
%F IM2_2008_72_5_a3
R. R. Salimov. ACL and differentiability of a generalization of quasi-conformal maps. Izvestiya. Mathematics , Tome 72 (2008) no. 5, pp. 977-984. http://geodesic.mathdoc.fr/item/IM2_2008_72_5_a3/

[1] O. Martio, V. Ryazanov, U. Srebro, E. Yakubov, “On the theory of $Q(x)$-homeomorphisms”, Dokl. Math., 64:3 (2001), 306–308 | MR | Zbl

[2] O. Martio, V. Ryazanov, U. Srebro, E. Yakubov, “$Q$-homeomorphisms”, Complex analysis and dynamical systems, Proceedings of the 3rd international conference (Karmiel, 2001), Contemp. Math., 364, Amer. Math. Soc., Providence, RI, 2004, 193–203 | MR | Zbl

[3] O. Martio, V. Ryazanov, U. Srebro, E. Yakubov, “On $Q$-homeomorphisms”, Ann. Acad. Sci. Fenn. Math., 30:1 (2005), 49–69 | MR | Zbl

[4] J. Väisälä, Lectures on $n$-dimensional quasiconformal mappings, Lecture Notes in Math., 229, Springer-Verlag, Berlin–New York, 1971 | DOI | MR | Zbl

[5] A. A. Ignat'ev, V. I. Ryazanov, “Finite mean oscillation in mapping theory”, Ukr. Math. Bull., 2:3 (2005), 403–424 | MR

[6] A. A. Ignat'ev, V. I. Ryazanov, “On the theory of the boundary behavior of spatial mappings”, Ukr. Math. Bull., 3:2 (2006), 189–201 | MR

[7] V. Ryazanov, R. Salimov, “Weakly flat spaces and boundaries in the mapping theory”, Ukr. Math. Bull., 4:2 (2007), 199–234

[8] V. I. Ryazanov, E. A. Sevost'yanov, “Equicontinuous classes of ring $Q$ -homeomorphisms”, Siberian Math. J., 48:6 (2007), 1093–1105 | DOI | MR

[9] Yu. G. Reshetnyak, Prostranstvennye otobrazheniya s ogranichennym iskazheniem, Nauka, Novosibirsk, 1982 | MR | Zbl

[10] O. Martio, S. Rickman, J. Väisälä, “Definitions for quasiregular mappings”, Ann. Acad. Sci. Fenn. Ser. A I, 448 (1969), 40 pp. | MR | Zbl

[11] F. W. Gehring, Complex analysis and its applications, vol. II (Lectures, Internat. Sem., Trieste, 1975), Internat. Atomic Energy Agency, Vienna, 1976, 213–268 | MR | Zbl

[12] J. Hesse, “A $p$-extremal length and $p$-capacity equality”, Ark. Mat., 13:1 (1975), 131–144 | DOI | MR | Zbl

[13] V. A. Shlyk, “The equality between $p$-capacity and $p$-modulus”, Siberian Math. J., 34:6 (1993), 1196–1200 | DOI | MR | Zbl

[14] T. Rado, P. V. Reichelderfer, Continuous transformations in analysis. With an introduction to algebraic topology, Grundlehren der mathematischen Wissenschaften, LXXV, Spinger–Verlag, Berlin–Göttingen–Heidelberg, 1955 | MR | Zbl

[15] S. Saks, Theory of the integral, Dover, New York, 1964 | MR

[16] E. Beckenbach, R. Bellman, Inequalities, Ergebnisse der Mathematik und ihrer Grenzgebiete. Neue Folge, 30, Springer-Verlag, New York, 1965 | MR | MR | Zbl | Zbl

[17] V. G. Maz'ya, Sobolev spaces, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1985 | MR | MR | Zbl | Zbl