ACL and differentiability of a generalization of quasi-conformal maps
Izvestiya. Mathematics , Tome 72 (2008) no. 5, pp. 977-984
Voir la notice de l'article provenant de la source Math-Net.Ru
It is established that $Q$-homeomorphisms (in the sense of O. Martio) defined in $\mathbb{R}^n$, $n\geqslant2$, are absolutely continuous on lines. Furthermore, they belong to the Sobolev class $W_{\mathrm{loc}}^{1,1}$ and are differentiable almost everywhere for $Q\in L^{1}_{\mathrm{loc}}$.
@article{IM2_2008_72_5_a3,
author = {R. R. Salimov},
title = {ACL and differentiability of a generalization of quasi-conformal maps},
journal = {Izvestiya. Mathematics },
pages = {977--984},
publisher = {mathdoc},
volume = {72},
number = {5},
year = {2008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2008_72_5_a3/}
}
R. R. Salimov. ACL and differentiability of a generalization of quasi-conformal maps. Izvestiya. Mathematics , Tome 72 (2008) no. 5, pp. 977-984. http://geodesic.mathdoc.fr/item/IM2_2008_72_5_a3/