ACL and differentiability of a generalization of quasi-conformal maps
Izvestiya. Mathematics , Tome 72 (2008) no. 5, pp. 977-984

Voir la notice de l'article provenant de la source Math-Net.Ru

It is established that $Q$-homeomorphisms (in the sense of O. Martio) defined in $\mathbb{R}^n$, $n\geqslant2$, are absolutely continuous on lines. Furthermore, they belong to the Sobolev class $W_{\mathrm{loc}}^{1,1}$ and are differentiable almost everywhere for $Q\in L^{1}_{\mathrm{loc}}$.
@article{IM2_2008_72_5_a3,
     author = {R. R. Salimov},
     title = {ACL and differentiability of a generalization of quasi-conformal maps},
     journal = {Izvestiya. Mathematics },
     pages = {977--984},
     publisher = {mathdoc},
     volume = {72},
     number = {5},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2008_72_5_a3/}
}
TY  - JOUR
AU  - R. R. Salimov
TI  - ACL and differentiability of a generalization of quasi-conformal maps
JO  - Izvestiya. Mathematics 
PY  - 2008
SP  - 977
EP  - 984
VL  - 72
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2008_72_5_a3/
LA  - en
ID  - IM2_2008_72_5_a3
ER  - 
%0 Journal Article
%A R. R. Salimov
%T ACL and differentiability of a generalization of quasi-conformal maps
%J Izvestiya. Mathematics 
%D 2008
%P 977-984
%V 72
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2008_72_5_a3/
%G en
%F IM2_2008_72_5_a3
R. R. Salimov. ACL and differentiability of a generalization of quasi-conformal maps. Izvestiya. Mathematics , Tome 72 (2008) no. 5, pp. 977-984. http://geodesic.mathdoc.fr/item/IM2_2008_72_5_a3/