Harmonic analysis on local fields and adelic spaces.~I
Izvestiya. Mathematics , Tome 72 (2008) no. 5, pp. 915-976.

Voir la notice de l'article provenant de la source Math-Net.Ru

We develop harmonic analysis on the objects of a category $C_2$ of infinite-dimensional filtered vector spaces over a finite field. This category includes two-dimensional local fields and adelic spaces of algebraic surfaces defined over a finite field. As the main result, we construct the theory of the Fourier transform on these objects and obtain two-dimensional Poisson formulae.
@article{IM2_2008_72_5_a2,
     author = {D. V. Osipov and A. N. Parshin},
     title = {Harmonic analysis on local fields and adelic {spaces.~I}},
     journal = {Izvestiya. Mathematics },
     pages = {915--976},
     publisher = {mathdoc},
     volume = {72},
     number = {5},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2008_72_5_a2/}
}
TY  - JOUR
AU  - D. V. Osipov
AU  - A. N. Parshin
TI  - Harmonic analysis on local fields and adelic spaces.~I
JO  - Izvestiya. Mathematics 
PY  - 2008
SP  - 915
EP  - 976
VL  - 72
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2008_72_5_a2/
LA  - en
ID  - IM2_2008_72_5_a2
ER  - 
%0 Journal Article
%A D. V. Osipov
%A A. N. Parshin
%T Harmonic analysis on local fields and adelic spaces.~I
%J Izvestiya. Mathematics 
%D 2008
%P 915-976
%V 72
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2008_72_5_a2/
%G en
%F IM2_2008_72_5_a2
D. V. Osipov; A. N. Parshin. Harmonic analysis on local fields and adelic spaces.~I. Izvestiya. Mathematics , Tome 72 (2008) no. 5, pp. 915-976. http://geodesic.mathdoc.fr/item/IM2_2008_72_5_a2/

[1] Algebraic number theory, Proceedings of an instructional conference organized by the London Mathematical Society with the support of the International Mathematical Union, eds. J. W. S. Cassels, A. Fröhlich, Academic Press, London, 1967 | MR | MR

[2] A. Veil, Osnovy teorii chisel, Mir, M., 1972 ; A. Weil, Basic number theory, Die Grundlehren der mathematischen Wissenschaften, 144, Springer-Verlag, New York, 1967 | MR | Zbl | MR | Zbl

[3] A. A. Beilinson, “Residues and adeles”, Funct. Anal. Appl., 14:1 (1980), 34–35 | DOI | MR | Zbl

[4] A. Huber, “On the Parshin–Beilinson adèles for schemes”, Abh. Math. Sem. Univ. Hamburg, 61 (1991), 249–273 | DOI | MR | Zbl

[5] A. N. Parshin, “On the arithmetic of two-dimensional schemes I. Distributions and residues”, Math. USSR-Izv., 10:4 (1976), 695–729 | DOI | MR | Zbl

[6] T. Fimmel, A. N. Parshin, Introduction to the higher adelic theory, Preprint, 1999

[7] D. V. Osipov, “$n$-dimensional local fields and adeles on $n$-dimensional schemes”, Surveys in Contemporary Mathematics, London Mathematical Society Lecture Note Series, 347, eds. N. Young et al., Cambridge University Press, Cambridge, 2007, 131–164 | Zbl

[8] A. N. Parshin, Lectures in University Paris-Nord, 1995–96

[9] A. N. Parshin, “Higher-dimensional local fields and $L$-functions”, Invitation to higher local fields (Münster, 1999), Geom. Topol. Monogr., 3, Geom. Topol. Publ., Coventry, 2000, 199–213 ; arXiv: math.AG/0012151 | MR | Zbl

[10] A. N. Parshin, “Chern classes, adeles and $L$-functions”, J. Reine Angew. Math., 341 (1983), 174–192 | MR | Zbl

[11] F. Bruhat, “Distributions sur un groupe localement compact et applications à l'étude des représentations des groupes $\wp$-adiques”, Bull. Soc. Math. France, 89 (1961), 43–75 | MR | Zbl

[12] D. Osipov, “Adeles on $n$-dimensional schemes and categories $C_n$”, Internat. J. Math., 18:3 (2007), 269–279 ; arXiv: math.AG/0509189 | DOI | MR | Zbl

[13] V. G. Kac, D. H. Peterson, “Spin and wedge representations of infinite-dimensional Lie algebras and groups”, Proc. Nat. Acad. Sci. U.S.A., 78:6 (1981), 3308–3312 | DOI | MR | Zbl

[14] M. M. Kapranov, Semiinfinite symmetric powers, arXiv: math.QA/0107089

[15] A. N. Parshin, Harmonic analysis on adelic spaces and local fields, Mathematisches forschungsinstitut Oberwolfach, Report No. 43/2005, Arakelov Geometry, 2471–2474

[16] S. Lefschetz, Algebraic topology, Amer. Math. Soc. Colloq. Publ., 27, Amer. Math. Soc., New York, 1942 | MR | Zbl

[17] D. Gaitsgory, D. Kazhdan, “Representations of algebraic groups over a 2-dimensional local field”, Geom. Funct. Anal., 14:3 (2004), 535–574 ; arXiv: math.RT/0302.174 | DOI | MR | Zbl

[18] M. M. Kapranov, “Double affine Hecke algebras and 2-dimensional local fields”, J. Amer. Math. Soc., 14:1 (2001), 239–262 ; arXiv: math.AG/9812021 | DOI | MR | Zbl

[19] A. N. Parshin, “Vector bundles and arithmetical groups. I”, Proc. Steklov Inst. Math., 208:10 (1995), 212–233 ; arXiv: math.AG/9605001 | MR | Zbl

[20] D. V. Osipov, “Central extensions and reciprocity laws on algebraic surfaces”, Sb. Math., 196:10 (2005), 1503–1527 ; arXiv: math.NT/0501155 | DOI | MR | Zbl