Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2008_72_5_a2, author = {D. V. Osipov and A. N. Parshin}, title = {Harmonic analysis on local fields and adelic {spaces.~I}}, journal = {Izvestiya. Mathematics }, pages = {915--976}, publisher = {mathdoc}, volume = {72}, number = {5}, year = {2008}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2008_72_5_a2/} }
D. V. Osipov; A. N. Parshin. Harmonic analysis on local fields and adelic spaces.~I. Izvestiya. Mathematics , Tome 72 (2008) no. 5, pp. 915-976. http://geodesic.mathdoc.fr/item/IM2_2008_72_5_a2/
[1] Algebraic number theory, Proceedings of an instructional conference organized by the London Mathematical Society with the support of the International Mathematical Union, eds. J. W. S. Cassels, A. Fröhlich, Academic Press, London, 1967 | MR | MR
[2] A. Veil, Osnovy teorii chisel, Mir, M., 1972 ; A. Weil, Basic number theory, Die Grundlehren der mathematischen Wissenschaften, 144, Springer-Verlag, New York, 1967 | MR | Zbl | MR | Zbl
[3] A. A. Beilinson, “Residues and adeles”, Funct. Anal. Appl., 14:1 (1980), 34–35 | DOI | MR | Zbl
[4] A. Huber, “On the Parshin–Beilinson adèles for schemes”, Abh. Math. Sem. Univ. Hamburg, 61 (1991), 249–273 | DOI | MR | Zbl
[5] A. N. Parshin, “On the arithmetic of two-dimensional schemes I. Distributions and residues”, Math. USSR-Izv., 10:4 (1976), 695–729 | DOI | MR | Zbl
[6] T. Fimmel, A. N. Parshin, Introduction to the higher adelic theory, Preprint, 1999
[7] D. V. Osipov, “$n$-dimensional local fields and adeles on $n$-dimensional schemes”, Surveys in Contemporary Mathematics, London Mathematical Society Lecture Note Series, 347, eds. N. Young et al., Cambridge University Press, Cambridge, 2007, 131–164 | Zbl
[8] A. N. Parshin, Lectures in University Paris-Nord, 1995–96
[9] A. N. Parshin, “Higher-dimensional local fields and $L$-functions”, Invitation to higher local fields (Münster, 1999), Geom. Topol. Monogr., 3, Geom. Topol. Publ., Coventry, 2000, 199–213 ; arXiv: math.AG/0012151 | MR | Zbl
[10] A. N. Parshin, “Chern classes, adeles and $L$-functions”, J. Reine Angew. Math., 341 (1983), 174–192 | MR | Zbl
[11] F. Bruhat, “Distributions sur un groupe localement compact et applications à l'étude des représentations des groupes $\wp$-adiques”, Bull. Soc. Math. France, 89 (1961), 43–75 | MR | Zbl
[12] D. Osipov, “Adeles on $n$-dimensional schemes and categories $C_n$”, Internat. J. Math., 18:3 (2007), 269–279 ; arXiv: math.AG/0509189 | DOI | MR | Zbl
[13] V. G. Kac, D. H. Peterson, “Spin and wedge representations of infinite-dimensional Lie algebras and groups”, Proc. Nat. Acad. Sci. U.S.A., 78:6 (1981), 3308–3312 | DOI | MR | Zbl
[14] M. M. Kapranov, Semiinfinite symmetric powers, arXiv: math.QA/0107089
[15] A. N. Parshin, Harmonic analysis on adelic spaces and local fields, Mathematisches forschungsinstitut Oberwolfach, Report No. 43/2005, Arakelov Geometry, 2471–2474
[16] S. Lefschetz, Algebraic topology, Amer. Math. Soc. Colloq. Publ., 27, Amer. Math. Soc., New York, 1942 | MR | Zbl
[17] D. Gaitsgory, D. Kazhdan, “Representations of algebraic groups over a 2-dimensional local field”, Geom. Funct. Anal., 14:3 (2004), 535–574 ; arXiv: math.RT/0302.174 | DOI | MR | Zbl
[18] M. M. Kapranov, “Double affine Hecke algebras and 2-dimensional local fields”, J. Amer. Math. Soc., 14:1 (2001), 239–262 ; arXiv: math.AG/9812021 | DOI | MR | Zbl
[19] A. N. Parshin, “Vector bundles and arithmetical groups. I”, Proc. Steklov Inst. Math., 208:10 (1995), 212–233 ; arXiv: math.AG/9605001 | MR | Zbl
[20] D. V. Osipov, “Central extensions and reciprocity laws on algebraic surfaces”, Sb. Math., 196:10 (2005), 1503–1527 ; arXiv: math.NT/0501155 | DOI | MR | Zbl