The construction of combinatorial manifolds with prescribed sets of links of vertices
Izvestiya. Mathematics , Tome 72 (2008) no. 5, pp. 845-899.

Voir la notice de l'article provenant de la source Math-Net.Ru

To every oriented closed combinatorial manifold we assign the set (with repetitions) of isomorphism classes of links of its vertices. The resulting transformation $\mathcal{L}$ is the main object of study in this paper. We pose an inversion problem for $\mathcal{L}$ and show that this problem is closely related to Steenrod's problem on the realization of cycles and to the Rokhlin–Schwartz–Thom construction of combinatorial Pontryagin classes. We obtain a necessary condition for a set of isomorphism classes of combinatorial spheres to belong to the image of $\mathcal{L}$. (Sets satisfying this condition are said to be balanced.) We give an explicit construction showing that every balanced set of isomorphism classes of combinatorial spheres falls into the image of $\mathcal{L}$ after passing to a multiple set and adding several pairs of the form $(Z,-Z)$, where $-Z$ is the sphere $Z$ with the orientation reversed. Given any singular simplicial cycle $\xi$ of a space $X$, this construction enables us to find explicitly a combinatorial manifold $M$ and a map $\varphi\colon M\to X$ such that $\varphi_*[M]=r[\xi]$ for some positive integer $r$. The construction is based on resolving singularities of $\xi$. We give applications of the main construction to cobordisms of manifolds with singularities and cobordisms of simple cells. In particular, we prove that every rational additive invariant of cobordisms of manifolds with singularities admits a local formula. Another application is the construction of explicit (though inefficient) local combinatorial formulae for polynomials in the rational Pontryagin classes of combinatorial manifolds.
@article{IM2_2008_72_5_a0,
     author = {A. A. Gaifullin},
     title = {The construction of combinatorial manifolds with prescribed sets of links of vertices},
     journal = {Izvestiya. Mathematics },
     pages = {845--899},
     publisher = {mathdoc},
     volume = {72},
     number = {5},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2008_72_5_a0/}
}
TY  - JOUR
AU  - A. A. Gaifullin
TI  - The construction of combinatorial manifolds with prescribed sets of links of vertices
JO  - Izvestiya. Mathematics 
PY  - 2008
SP  - 845
EP  - 899
VL  - 72
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2008_72_5_a0/
LA  - en
ID  - IM2_2008_72_5_a0
ER  - 
%0 Journal Article
%A A. A. Gaifullin
%T The construction of combinatorial manifolds with prescribed sets of links of vertices
%J Izvestiya. Mathematics 
%D 2008
%P 845-899
%V 72
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2008_72_5_a0/
%G en
%F IM2_2008_72_5_a0
A. A. Gaifullin. The construction of combinatorial manifolds with prescribed sets of links of vertices. Izvestiya. Mathematics , Tome 72 (2008) no. 5, pp. 845-899. http://geodesic.mathdoc.fr/item/IM2_2008_72_5_a0/

[1] N. Levitt, C. Rourke, “The existence of combinatorial formulae for characteristic classes”, Trans. Amer. Math. Soc., 239 (1978), 391–397 | DOI | MR | Zbl

[2] A. A. Gaifullin, “Local formulae for combinatorial Pontryagin classes”, Izv. Math., 68:5 (2004), 861–910 | DOI | MR | Zbl

[3] A. A. Gaifullin, “Computation of characteristic classes of a manifold from a triangulation of it”, Russian Math. Surveys, 60:4 (2005), 615–644 | DOI | MR | Zbl

[4] M. W. Davis, T. Januszkiewicz, “Convex polytopes, Coxeter orbifolds and torus actions”, Duke Math. J., 62:2 (1991), 417–451 | DOI | MR | Zbl

[5] V. M. Bukhshtaber, T. E. Panov, Toricheskie deistviya v topologii i kombinatorike, MTsNMO, M., 2004 | MR | Zbl

[6] V. M. Buchstaber, A. P. Veselov, “On a remarkable functional equation in the theory of generalized Dunkl operators and transformations of elliptic genera”, Math. Z., 223:4 (1996), 595–607 | DOI | MR | Zbl

[7] V. M. Buhštaber, S. P. Novikov, “Formal groups, power systems and Adams operators”, Math. USSR-Sb., 13:1 (1971), 80–116 | DOI | MR | Zbl | Zbl

[8] D. Sullivan, “On the Hauptvermutung for manifolds”, Bull. Amer. Math. Soc., 73:4 (1967), 598–600 | DOI | MR | Zbl

[9] D. Sullivan, Geometric topology. Part I. Localization, periodicity, and Galois symmetry, Massachusetts Institute of Technology, Cambridge, MA, 1971 | MR

[10] N. A. Baas, “On bordism theory of manifolds with singularities”, Math. Scand., 33:2 (1973), 279–302 | MR | Zbl

[11] D. Sullivan, “Singularities in spaces”, Proc. of Liverpool Singularities Symposium II, Lecture Notes in Math., 209, Springer, Berlin, 1971, 196–206 | DOI | MR | Zbl

[12] R. Tom, “Nekotorye svoistva “v tselom” differentsiruemykh mnogoobrazii”, Rassloennye prostranstva, IL, M., 1958, 291–348

[13] M. Kato, “Topological resolution of singularities”, Topology, 12:4 (1973), 355–372 | DOI | MR | Zbl

[14] V. M. Buhštaber, “Modules of differentials of the Atiyah–Hirzebruch spectral sequence”, Math. USSR Sb., 7:2 (1969), 299–313 ; В. М. Бухштабер, “Модули дифференциалов спектральной последовательности Атья–Хирцебруха. II”, Матем. сб., 83:1 (1970), 61–76 | DOI | DOI | MR | MR | Zbl | Zbl

[15] V. M. Buhštaber, “Modules of differentials of the Atiyah–Hirzebruch spectral sequence. II”, Math. USSR Sb., 12:1 (1970), 59–75 | DOI | DOI | MR | MR | Zbl | Zbl

[16] S. Buoncristiano, M. Dedò, “On resolving singularities and relating bordisms to homology”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 7:4 (1980), 605–624 | MR | Zbl

[17] A. M. Gabriélov, I. M. Gel'fand, M. V. Losik, “Combinatorial computation of characteristic classes”, Funct. Anal. Appl., 9:2 (1975), 103–115 | DOI | DOI | MR | Zbl | Zbl

[18] A. M. Gabriélov, I. M. Gel'fand, M. V. Losik, “Combinatorial calculus of characteristic classes”, Funct. Anal. Appl., 9:3 (1975), 186–202 | DOI | DOI | MR | Zbl | Zbl

[19] R. MacPherson, “The combinatorial formula of Gabrielov, Gelfand and Losik for the first Pontrjagin class”, Séminaire Bourbaki vol. 1976/77 Exposés 489–506, Lecture Notes in Math., 677, Springer, Berlin, 1978, 105–124 | DOI | MR | Zbl

[20] I. M. Gelfand, R. D. MacPherson, “A combinatorial formula for the Pontrjagin classes”, Bull. Amer. Math. Soc. (N.S.), 26:2 (1992), 304–309 | DOI | MR | Zbl

[21] J. Cheeger, “Spectral geometry of singular Riemannian spaces”, J. Differential Geom., 18:4 (1983), 575–657 | MR | Zbl

[22] A. S. Mishchinko, “Local combinatorical Hirzebruch formula”, Proc. Steklov Inst. Math., 224:1 (1999), 226–239 | MR | Zbl

[23] V. A. Rokhlin, A. S. Shvarts, “O kombinatornoi invariantnosti klassov Pontryagina”, Dokl. AN SSSR, 114:3 (1957), 490–493 | MR | Zbl

[24] R. Thom, “Les classes charactéristiques de Pontrjagin des variétés triangulées”, International symposium on algebraic topology, Universidad Nacional Autonoma de Mexico and UNESCO, Mexico, 1958, 54–67 | MR | Zbl

[25] J. W. Milnor, J. D. Stasheff, Characteristic classes, Annals of Mathematics Studies, 76, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1974 | MR | MR | Zbl | Zbl

[26] A. Ranicki, D. Sullivan, “A semi-local combinatorial formula for the signature of a $4k$-manifold”, J. Differential Geom., 11:1 (1976), 23–29 | MR | Zbl

[27] M. Goresky, R. MacPherson, “Intersection homology theory”, Topology, 19:2 (1980), 135–162 | DOI | MR | Zbl

[28] M. Pezzana, “Diagrammi di Heegaard e triangolazione contratta”, Collection in memory of Enrico Bompiani, Boll. Un. Mat. Ital. (4), 12:3 (1975), 98–105 | MR | Zbl

[29] M. Ferri, “Una rappresentazione delle $n$-varietà topologiche triangolabili mediante grafi $(n+1)$-colorati”, Boll. Un. Mat. Ital. B (5), 13:1 (1976), 250–260 | MR | Zbl

[30] M. Ferri, C. Gagliardi, L. Grasselli, “A graph-theoretical representation of PL-manifolds – A survey on crystallizations”, Aequationes Math., 31:2–3 (1986), 121–141 | DOI | MR | Zbl

[31] B. A. Dubrovin, S. P. Novikov, A. T. Fomenko, Sovremennaya geometriya: Metody i prilozheniya. T. 3: Teoriya gomologii, Editorial URSS, M., 2001

[32] J. Cheeger, “On the Hodge theory of Riemannian pseudomanifolds”, Geometry of the Laplace operator. (Univ. Hawaii, Honolulu, 1979), Proc. Sympos. Pure Math., XXXVI, Amer. Math. Soc., Providence, RI, 1980, 91–145 | MR | Zbl

[33] M. Goreski, R. Mak-Ferson, Dzh. Chiger, “$\mathcal L^2$-kogomologii i GM-gomologii osobykh algebraicheskikh mnogoobrazii”, Dobavlenie k kn., U. Fulton, R. Mak-Ferson, Kategornyi podkhod k izucheniyu prostranstv s osobennostyami, Matematika: novoe v zarubezhnoi nauke, 33, Mir, M., 1983

[34] C. R. F. Maunder, “On the Pontrjagin classes of homology manifolds”, Topology, 10:2 (1971), 111–118 | DOI | MR | Zbl

[35] N. Martin, “On the difference between homology and piecewise-linear bundles”, J. London Math. Soc. (2), 6:2 (1973), 197–204 | DOI | MR | Zbl

[36] M. Furuta, “Homology cobordism group of homology 3-spheres”, Invent. Math., 100:1 (1990), 339–355 | DOI | MR | Zbl

[37] P. E. Conner, E. E. Fluyd, Differentiable periodic maps, Ergebnisse der Mathematik und ihrer Grenzgebiete, 33, Academic Press, New York; Springer-Verlag, Berlin–Göttingen–Heidelberg, 1964 | MR | Zbl | Zbl

[38] V. M. Bukhshtaber, “Kharakteristicheskie klassy v kobordizmakh i topologicheskie prilozheniya teorii odnoznachnykh i dvuznachnykh formalnykh grupp”, Itogi nauki i tekhn. Sovrem. probl. matematiki, 10, VINITI, M., 1978, 5–178 | MR | Zbl

[39] U. Pachner, “Konstruktionsmethoden und das kombinatorische Homöomorphieproblem für Triangulationen kompakter semilinearer Mannigfaltigkeiten”, Abh. Math. Sem. Univ. Hamburg, 57 (1987), 69–86 | DOI | MR | Zbl

[40] U. Pachner, “P. L. homeomorphic manifolds are equivalent by elementary shellings”, European J. Combin., 12:2 (1991), 129–145 | MR | Zbl