Remarks on uniform combined estimates of oscillatory integrals
Izvestiya. Mathematics , Tome 72 (2008) no. 4, pp. 793-816

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of constructing asymptotically exact (for $\Omega\gg 1$) uniform (with respect to parameters $t=(t_1,t_2,\dots,t_m)$) estimates for oscillatory integrals containing a large parameter $\Omega$. We suggest a possible multidimensional analogue of Vinogradov's well-known estimate for one-dimensional integrals. Based on this suggestion, we estimate the integrals with singularities of type $A_k$, $D_4^{\pm}$ (in Arnold's classification) and use the special case of $D_5^\pm$ to discuss the possibility of generalizing our results.
@article{IM2_2008_72_4_a7,
     author = {D. A. Popov},
     title = {Remarks on uniform combined estimates of oscillatory integrals},
     journal = {Izvestiya. Mathematics },
     pages = {793--816},
     publisher = {mathdoc},
     volume = {72},
     number = {4},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2008_72_4_a7/}
}
TY  - JOUR
AU  - D. A. Popov
TI  - Remarks on uniform combined estimates of oscillatory integrals
JO  - Izvestiya. Mathematics 
PY  - 2008
SP  - 793
EP  - 816
VL  - 72
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2008_72_4_a7/
LA  - en
ID  - IM2_2008_72_4_a7
ER  - 
%0 Journal Article
%A D. A. Popov
%T Remarks on uniform combined estimates of oscillatory integrals
%J Izvestiya. Mathematics 
%D 2008
%P 793-816
%V 72
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2008_72_4_a7/
%G en
%F IM2_2008_72_4_a7
D. A. Popov. Remarks on uniform combined estimates of oscillatory integrals. Izvestiya. Mathematics , Tome 72 (2008) no. 4, pp. 793-816. http://geodesic.mathdoc.fr/item/IM2_2008_72_4_a7/