Joint universality for periodic Hurwitz zeta-functions
Izvestiya. Mathematics , Tome 72 (2008) no. 4, pp. 741-760.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a joint universality theorem of Voronin type for systems of periodic Hurwitz zeta-functions with parameters $\alpha_1,\dots,\alpha_r$ such that the system $\{\log(m+\alpha_j):j=1,\dots,r,\ m\in\mathbb{N}_0\}$ is linearly independent over the field of rational numbers.
@article{IM2_2008_72_4_a5,
     author = {A. Laurin\v{c}ikas},
     title = {Joint universality for periodic {Hurwitz} zeta-functions},
     journal = {Izvestiya. Mathematics },
     pages = {741--760},
     publisher = {mathdoc},
     volume = {72},
     number = {4},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2008_72_4_a5/}
}
TY  - JOUR
AU  - A. Laurinčikas
TI  - Joint universality for periodic Hurwitz zeta-functions
JO  - Izvestiya. Mathematics 
PY  - 2008
SP  - 741
EP  - 760
VL  - 72
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2008_72_4_a5/
LA  - en
ID  - IM2_2008_72_4_a5
ER  - 
%0 Journal Article
%A A. Laurinčikas
%T Joint universality for periodic Hurwitz zeta-functions
%J Izvestiya. Mathematics 
%D 2008
%P 741-760
%V 72
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2008_72_4_a5/
%G en
%F IM2_2008_72_4_a5
A. Laurinčikas. Joint universality for periodic Hurwitz zeta-functions. Izvestiya. Mathematics , Tome 72 (2008) no. 4, pp. 741-760. http://geodesic.mathdoc.fr/item/IM2_2008_72_4_a5/

[1] A. Javtokas, A. Laurinčikas, “On the periodic Hurwitz zeta-function”, Hardy–Ramanujan J., 29 (2006), 18–36 | MR | Zbl

[2] A. Javtokas, A. Laurinčikas, “The universality of the periodic Hurwitz zeta-function”, Integral Transforms Spec. Funct., 17:10 (2006), 711–722 | DOI | MR | Zbl

[3] S. M. Voronin, “A theorem on the distribution of values of the Riemann zeta-function”, Soviet Math. Dokl., 16:2 (1975), 410 | MR | Zbl

[4] S. M. Voronin, “Theorem on the “universality” of the Riemann zeta-function”, Math. USSR-Izv., 9:3 (1975), 443–453 | DOI | MR | Zbl | Zbl

[5] A. A. Karatsuba, S. M. Voronin, The Riemann zeta-function, de Gruyter Expositions in Mathematics, 5, Walter de Gruyter Co., Berlin, 1992 | MR | Zbl

[6] S. M. Voronin, Izbrannye trudy: matematika, Pod red. A. A. Karatsuby, Izd-vo MGTU im. N. E. Baumana, M., 2006

[7] A. Laurinčikas, Limit theorems for the Riemann zeta-function, Mathematics and its Applications, 352, Kluwer, Dordrecht, 1996 | MR | Zbl

[8] A. Laurinčikas, “The universality of zeta-functions”, Acta Appl. Math., 78:1–3 (2003), 251–271 | DOI | MR | Zbl

[9] K. Matsumoto, “Probablistic value-distribution theory of zeta-functions”, Sugaku Expositions, 17:1 (2004), 51–71 | MR

[10] S. M. Voronin, “O funktsionalnoi nezavisimosti $L$-funktsii Dirikhle”, Acta Arith., 27 (1975), 493–503 | MR | Zbl

[11] S. M. Gonek, Analytic properties of zeta and $L$-functions, Ph. D. Thesis, University of Michigan, 1979

[12] B. Bagchi, The statistical behaviour and universality properties of the Riemann zeta-function and other allied Dirichlet series, Ph. D. Thesis, Indian Statistical Institute, Calcuta, 1981

[13] B. Bagchi, “A joint universality theorem for Dirichlet $L$-functions”, Math. Z., 181:3 (1982), 319–334 | DOI | MR | Zbl

[14] A. Laurinčikas, “The joint universality for periodic Hurwitz zeta-functions”, Analysis (Munich), 26:3 (2006), 419–428 | DOI | MR | Zbl

[15] A. Laurinčikas, “Voronin-type theorem for periodic Hurwitz zeta-functions”, Sb. Math., 198:2 (2007), 231–242 | DOI | MR

[16] A. Javtokas, A. Laurinčikas, A joint universality theorem for periodic Hurwitz zeta-functions, Preprint, Vilnius University, 2006

[17] H. Heyer, Probability measures on locally compact groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, 94, Springer-Verlag, Berlin–New York, 1977 | MR | MR | Zbl | Zbl

[18] A. Laurinčikas, K. Matsumoto, “Joint value-distribution theorems on Lerch zeta-functions. II”, Lithuanian Math. J., 46:3 (2006), 271–286 | DOI | MR | Zbl

[19] A. Laurinčikas, K. Matsumoto, “Joint value-distribution theorems on Lerch zeta-functions. III”, Analytic and Probabilistic methods in Number Theory, Proceedings of the Fourth International Conference in Honour of J. Kubilius (Palanga, Lithuania, 2006), eds. A. Laurinčikas, E. Manstavičius, TEV, Vilnius, 2007, 87–98

[20] P. Billingsley, Convergence of probability measures, Wiley, New York–London–Sydney, 1968 | MR | MR | Zbl

[21] J. B. Conway, Functions of one complex variable, Graduate Texts in Mathematics, 11, Springer-Verlag, New York–Heidelberg, 1973 | MR | Zbl

[22] A. Laurinčikas, R. Garunkštis, The Lerch zeta-function, Kluwer, Dordrecht, 2002 | MR | Zbl

[23] H. Cramér, M. R. Leadbetter, Stationary and related stochastic processes. Sample function properties and their applications, John Wiley, New York–London–Sydney, 1967 | MR | Zbl

[24] A. Laurinčikas, K. Matsumoto, “The joint universality of zeta-functions attached to certain cusp forms”, Fiz. Mat. Fak. Moksl. Semin. Darb., 5 (2002), 57–75 | MR

[25] A. Laurinčikas, K. Matsumoto, “The joint universality and the functional independence for Lerch zeta-functions”, Nagoya Math. J., 157 (2000), 211–227 | MR | Zbl

[26] J. L. Walsh, Interpolation and approximation by rational functions in the complex domain, American Mathematical Society Colloquium Publications, XX, Amer. Math. Soc., Providence, RI, 1960 | MR | MR | Zbl | Zbl