Joint universality for periodic Hurwitz zeta-functions
Izvestiya. Mathematics , Tome 72 (2008) no. 4, pp. 741-760

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a joint universality theorem of Voronin type for systems of periodic Hurwitz zeta-functions with parameters $\alpha_1,\dots,\alpha_r$ such that the system $\{\log(m+\alpha_j):j=1,\dots,r,\ m\in\mathbb{N}_0\}$ is linearly independent over the field of rational numbers.
@article{IM2_2008_72_4_a5,
     author = {A. Laurin\v{c}ikas},
     title = {Joint universality for periodic {Hurwitz} zeta-functions},
     journal = {Izvestiya. Mathematics },
     pages = {741--760},
     publisher = {mathdoc},
     volume = {72},
     number = {4},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2008_72_4_a5/}
}
TY  - JOUR
AU  - A. Laurinčikas
TI  - Joint universality for periodic Hurwitz zeta-functions
JO  - Izvestiya. Mathematics 
PY  - 2008
SP  - 741
EP  - 760
VL  - 72
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2008_72_4_a5/
LA  - en
ID  - IM2_2008_72_4_a5
ER  - 
%0 Journal Article
%A A. Laurinčikas
%T Joint universality for periodic Hurwitz zeta-functions
%J Izvestiya. Mathematics 
%D 2008
%P 741-760
%V 72
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2008_72_4_a5/
%G en
%F IM2_2008_72_4_a5
A. Laurinčikas. Joint universality for periodic Hurwitz zeta-functions. Izvestiya. Mathematics , Tome 72 (2008) no. 4, pp. 741-760. http://geodesic.mathdoc.fr/item/IM2_2008_72_4_a5/