The Robinson--Schensted--Knuth correspondence and the bijections of commutativity and associativity
Izvestiya. Mathematics , Tome 72 (2008) no. 4, pp. 689-716.

Voir la notice de l'article provenant de la source Math-Net.Ru

The bijections of associativity and commutativity arise from symmetries of the Littlewood–Richardson coefficients. We define these bijections in terms of arrays and show that they coincide with analogous bijections defined in terms of discretely concave functions using the octahedron recurrence as well as with bijections defined in terms of Young tableaux. The main ingredient in the proof of their coincidence is a functional version of the Robinson–Schensted–Knuth correspondence.
@article{IM2_2008_72_4_a3,
     author = {V. I. Danilov and G. A. Koshevoy},
     title = {The {Robinson--Schensted--Knuth} correspondence and the bijections of commutativity and associativity},
     journal = {Izvestiya. Mathematics },
     pages = {689--716},
     publisher = {mathdoc},
     volume = {72},
     number = {4},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2008_72_4_a3/}
}
TY  - JOUR
AU  - V. I. Danilov
AU  - G. A. Koshevoy
TI  - The Robinson--Schensted--Knuth correspondence and the bijections of commutativity and associativity
JO  - Izvestiya. Mathematics 
PY  - 2008
SP  - 689
EP  - 716
VL  - 72
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2008_72_4_a3/
LA  - en
ID  - IM2_2008_72_4_a3
ER  - 
%0 Journal Article
%A V. I. Danilov
%A G. A. Koshevoy
%T The Robinson--Schensted--Knuth correspondence and the bijections of commutativity and associativity
%J Izvestiya. Mathematics 
%D 2008
%P 689-716
%V 72
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2008_72_4_a3/
%G en
%F IM2_2008_72_4_a3
V. I. Danilov; G. A. Koshevoy. The Robinson--Schensted--Knuth correspondence and the bijections of commutativity and associativity. Izvestiya. Mathematics , Tome 72 (2008) no. 4, pp. 689-716. http://geodesic.mathdoc.fr/item/IM2_2008_72_4_a3/

[1] I. Makdonald, Simmetricheskie funktsii i mnogochleny Kholla, Mir, M., 1985 ; I. G. Macdonald, Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1979 | MR | Zbl | MR | Zbl

[2] W. Fulton, Young tableaux, London Mathematical Society Student Texts, 35, Cambridge University Press, Cambridge, 1997 | MR | Zbl

[3] V. I. Danilov, G. A. Koshevoi, “Arrays and the combinatorics of Young tableaux”, Russian Math. Surveys, 60:2 (2005), 269–334 | DOI | MR | Zbl

[4] W. Fulton, “Eigenvalues, invariant factors, highest weights, and Schubert calculus”, Bull. Amer. Math. Soc. (2), 37:3 (2000), 209–249 | DOI | MR | Zbl

[5] A. S. Buch, “The saturation conjecture (after A. Knutson and T. Tao)”, Enseign. Math. (2), 46:1–2 (2000), 43–60 | MR | Zbl

[6] A. Knutson, T. Tao, “The honeycomb model of $GL_n(\mathbb C)$ tensor products. I: Proof of the saturation conjecture”, J. Amer. Math. Soc., 12:4 (1999), 1055–1090 | DOI | MR | Zbl

[7] A. Henriques, J. Kamnitzer, “The octahedron recurrence and $gl_n$ crystals”, Adv. Math., 206:1 (2006), 211–249 | DOI | MR | Zbl

[8] I. Pak, E. Vallejo, Reductions of Young tableau bijections, arXiv: math.CO/0408171

[9] A. Knutson, T. Tao, C. Woodward, “A positive proof of the Littlewood–Richardson rule using the octahedron recurrence”, Electron. J. Combin., 11:1 (2004), 61 ; arXiv: math.CO/0306274 | MR | Zbl

[10] V. Danilov, G. Koshevoy, Arrays and octahedron recurrence, arXiv: math.CO/0504299

[11] V. I. Danilov, G. A. Koshevoi, “Discrete convexity and Hermitian matrices”, Proc. Steklov Inst. Math., 241 (2003), 58–78 | MR | Zbl

[12] D. E. Speyer, “Perfect matchings and the octahedron recurrence”, J. Algebraic Combin., 25:3 (2007), 309–348 ; arXiv: math.CO/0402452 | DOI | MR | Zbl

[13] S. Fomin, A. Zelevinsky, “The Laurent phenomenon”, Adv. in Appl. Math., 28:2 (2002), 119–144 ; arXiv: math.CO/0104241 | DOI | MR