Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2008_72_4_a3, author = {V. I. Danilov and G. A. Koshevoy}, title = {The {Robinson--Schensted--Knuth} correspondence and the bijections of commutativity and associativity}, journal = {Izvestiya. Mathematics }, pages = {689--716}, publisher = {mathdoc}, volume = {72}, number = {4}, year = {2008}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2008_72_4_a3/} }
TY - JOUR AU - V. I. Danilov AU - G. A. Koshevoy TI - The Robinson--Schensted--Knuth correspondence and the bijections of commutativity and associativity JO - Izvestiya. Mathematics PY - 2008 SP - 689 EP - 716 VL - 72 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2008_72_4_a3/ LA - en ID - IM2_2008_72_4_a3 ER -
%0 Journal Article %A V. I. Danilov %A G. A. Koshevoy %T The Robinson--Schensted--Knuth correspondence and the bijections of commutativity and associativity %J Izvestiya. Mathematics %D 2008 %P 689-716 %V 72 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_2008_72_4_a3/ %G en %F IM2_2008_72_4_a3
V. I. Danilov; G. A. Koshevoy. The Robinson--Schensted--Knuth correspondence and the bijections of commutativity and associativity. Izvestiya. Mathematics , Tome 72 (2008) no. 4, pp. 689-716. http://geodesic.mathdoc.fr/item/IM2_2008_72_4_a3/
[1] I. Makdonald, Simmetricheskie funktsii i mnogochleny Kholla, Mir, M., 1985 ; I. G. Macdonald, Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1979 | MR | Zbl | MR | Zbl
[2] W. Fulton, Young tableaux, London Mathematical Society Student Texts, 35, Cambridge University Press, Cambridge, 1997 | MR | Zbl
[3] V. I. Danilov, G. A. Koshevoi, “Arrays and the combinatorics of Young tableaux”, Russian Math. Surveys, 60:2 (2005), 269–334 | DOI | MR | Zbl
[4] W. Fulton, “Eigenvalues, invariant factors, highest weights, and Schubert calculus”, Bull. Amer. Math. Soc. (2), 37:3 (2000), 209–249 | DOI | MR | Zbl
[5] A. S. Buch, “The saturation conjecture (after A. Knutson and T. Tao)”, Enseign. Math. (2), 46:1–2 (2000), 43–60 | MR | Zbl
[6] A. Knutson, T. Tao, “The honeycomb model of $GL_n(\mathbb C)$ tensor products. I: Proof of the saturation conjecture”, J. Amer. Math. Soc., 12:4 (1999), 1055–1090 | DOI | MR | Zbl
[7] A. Henriques, J. Kamnitzer, “The octahedron recurrence and $gl_n$ crystals”, Adv. Math., 206:1 (2006), 211–249 | DOI | MR | Zbl
[8] I. Pak, E. Vallejo, Reductions of Young tableau bijections, arXiv: math.CO/0408171
[9] A. Knutson, T. Tao, C. Woodward, “A positive proof of the Littlewood–Richardson rule using the octahedron recurrence”, Electron. J. Combin., 11:1 (2004), 61 ; arXiv: math.CO/0306274 | MR | Zbl
[10] V. Danilov, G. Koshevoy, Arrays and octahedron recurrence, arXiv: math.CO/0504299
[11] V. I. Danilov, G. A. Koshevoi, “Discrete convexity and Hermitian matrices”, Proc. Steklov Inst. Math., 241 (2003), 58–78 | MR | Zbl
[12] D. E. Speyer, “Perfect matchings and the octahedron recurrence”, J. Algebraic Combin., 25:3 (2007), 309–348 ; arXiv: math.CO/0402452 | DOI | MR | Zbl
[13] S. Fomin, A. Zelevinsky, “The Laurent phenomenon”, Adv. in Appl. Math., 28:2 (2002), 119–144 ; arXiv: math.CO/0104241 | DOI | MR