@article{IM2_2008_72_4_a2,
author = {D. I. Borisov and R. R. Gadyl'shin},
title = {On the spectrum of a~periodic operator with a~small localized perturbation},
journal = {Izvestiya. Mathematics},
pages = {659--688},
year = {2008},
volume = {72},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2008_72_4_a2/}
}
D. I. Borisov; R. R. Gadyl'shin. On the spectrum of a periodic operator with a small localized perturbation. Izvestiya. Mathematics, Tome 72 (2008) no. 4, pp. 659-688. http://geodesic.mathdoc.fr/item/IM2_2008_72_4_a2/
[1] I. M. Glazman, Direct methods of qualitative spectral analysis of singular differential operators, Daniel Davey Co., Inc., New York, 1966 | MR | MR | Zbl | Zbl
[2] M. S. P. Eastham, The spectral theory of periodic differential equations, Texts in Mathematics, Scottish Academic Press, Edinburgh, 1973 | Zbl
[3] F. S. Rofe-Beketov, “A test for the finiteness of the number of discrete levels introduced into the gaps of a continuous spectrum by perturbations of a periodic potential”, Sov. Math. Dokl., 5 (1964), 689–692 | MR | Zbl
[4] V. A. Zheludev, “O sobstvennykh znacheniyakh vozmuschennogo operatora Shrëdingera s periodicheskim potentsialom”, Problemy matem. fiziki, 2 (1967), 108–123 | Zbl
[5] V. A. Zheludev, “Perturbations of the spectrum of the Schrödinger operator with a complex periodic potential”, Spectral Theory, 3 (1969), 25–41 | Zbl
[6] F. Gesztesy, B. Simon, “A short proof of Zheludev's theorem”, Trans. Amer. Math. Soc., 335:1 (1993), 329–340 | DOI | MR | Zbl
[7] T. Kato, Perturbation theory for linear operators, Die Grundlehren der mathematischen Wissenschaften, 132, Springer-Verlag, New York, 1966 | MR | MR | Zbl | Zbl
[8] A. N. Kolmogorov, S. V. Fomin, Introductory real analysis, Dover Publications, Inc., New York, 1975 | MR | Zbl
[9] E. Sánchez-Palencia, Nonhomogeneous media and vibration theory, Lecture Notes in Phys., 127, Springer-Verlag, Berlin–New York, 1980 | MR | MR | Zbl
[10] R. R. Gadyl'shin, “Local perturbations of the Schrödinger operator on the axis”, Theoret. and Math. Phys., 132:1 (2002), 976–982 | DOI | MR | Zbl
[11] A. F. Filippov, Differential equations with discontinuous right-hand sides, Mathematics and Its Applications: Soviet Series, 18, Kluwer, Dordrecht, 1988 | MR | MR | Zbl