On the spectrum of a~periodic operator with a~small localized perturbation
Izvestiya. Mathematics , Tome 72 (2008) no. 4, pp. 659-688
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper deals with the spectrum of a periodic self-adjoint differential operator on the real axis perturbed by a small localized non-self-adjoint operator. We show that the continuous spectrum does not depend on the perturbation, the residual spectrum is empty, and the point spectrum has no finite accumulation points. We study the problem of the existence of eigenvalues embedded in the continuous spectrum, obtain necessary and sufficient conditions for the existence of eigenvalues, construct asymptotic expansions of the eigenvalues and corresponding eigenfunctions and consider some examples.
@article{IM2_2008_72_4_a2,
author = {D. I. Borisov and R. R. Gadyl'shin},
title = {On the spectrum of a~periodic operator with a~small localized perturbation},
journal = {Izvestiya. Mathematics },
pages = {659--688},
publisher = {mathdoc},
volume = {72},
number = {4},
year = {2008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2008_72_4_a2/}
}
TY - JOUR AU - D. I. Borisov AU - R. R. Gadyl'shin TI - On the spectrum of a~periodic operator with a~small localized perturbation JO - Izvestiya. Mathematics PY - 2008 SP - 659 EP - 688 VL - 72 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2008_72_4_a2/ LA - en ID - IM2_2008_72_4_a2 ER -
D. I. Borisov; R. R. Gadyl'shin. On the spectrum of a~periodic operator with a~small localized perturbation. Izvestiya. Mathematics , Tome 72 (2008) no. 4, pp. 659-688. http://geodesic.mathdoc.fr/item/IM2_2008_72_4_a2/