The algebra of bipartite graphs and Hurwitz numbers of seamed surfaces
Izvestiya. Mathematics, Tome 72 (2008) no. 4, pp. 627-646 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We extend the definition of Hurwitz numbers to the case of seamed surfaces, which arise in new models of mathematical physics, and prove that they form a system of correlators for a Klein topological field theory in the sense defined in [1]. We find the corresponding Cardy–Frobenius algebras, which yield a method for calculating the Hurwitz numbers. As a by-product, we prove that the vector space generated by the bipartite graphs with $n$ edges possesses a natural binary operation that makes this space into a non-commutative Frobenius algebra isomorphic to the algebra of intertwining operators for a representation of the symmetric group $S_n$ on the space generated by the set of all partitions of a set of $n$ elements.
@article{IM2_2008_72_4_a0,
     author = {A. V. Alekseevskii and S. M. Natanzon},
     title = {The algebra of bipartite graphs and {Hurwitz} numbers of seamed surfaces},
     journal = {Izvestiya. Mathematics},
     pages = {627--646},
     year = {2008},
     volume = {72},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2008_72_4_a0/}
}
TY  - JOUR
AU  - A. V. Alekseevskii
AU  - S. M. Natanzon
TI  - The algebra of bipartite graphs and Hurwitz numbers of seamed surfaces
JO  - Izvestiya. Mathematics
PY  - 2008
SP  - 627
EP  - 646
VL  - 72
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/IM2_2008_72_4_a0/
LA  - en
ID  - IM2_2008_72_4_a0
ER  - 
%0 Journal Article
%A A. V. Alekseevskii
%A S. M. Natanzon
%T The algebra of bipartite graphs and Hurwitz numbers of seamed surfaces
%J Izvestiya. Mathematics
%D 2008
%P 627-646
%V 72
%N 4
%U http://geodesic.mathdoc.fr/item/IM2_2008_72_4_a0/
%G en
%F IM2_2008_72_4_a0
A. V. Alekseevskii; S. M. Natanzon. The algebra of bipartite graphs and Hurwitz numbers of seamed surfaces. Izvestiya. Mathematics, Tome 72 (2008) no. 4, pp. 627-646. http://geodesic.mathdoc.fr/item/IM2_2008_72_4_a0/

[1] A. Alexeevski, S. Natanzon, “Noncommutative two-dimensional topological field theories and Hurwitz numbers for real algebraic curves”, Selecta Math. (N.S.), 12:3–4 (2006), 307–377 ; arXiv: math/0202164 | DOI | MR | Zbl

[2] A. Hurwitz, “Ueber Riemann'sche Flächen mit gegebenen Verzweigungspunkten”, Math. Ann., 39:1 (1891), 1–60 | DOI | MR

[3] S. Cordes, G. Moore, S. Ramgoolam, “Large $N$ $2\mathrm{D}$ Yang–Mills theory and topological string theory”, Commun. Math. Phys., 185:3 (1997), 543–619 | DOI | MR | Zbl

[4] D. J. Gross, W. Taylor, “Twists and Wilson loops in the string theory of two dimensional QCD”, Nuclear Phys. B, 403:1–2 (1993), 395–449 | DOI | MR | Zbl

[5] R. Dijkgraaf, “Mirror symmetry and elliptic curves”, The moduli spaces of curves (Texel Island, 1994), Progr. Math., 129, 1995, 149–163 | MR | Zbl

[6] V. I. Arnol'd, “Topological classification of trigonometric polynomials and combinatorics of graphs with an equal number of vertices and edges”, Funct. Anal. Appl., 30:1 (1996), 1–14 | DOI | MR | Zbl

[7] I. K. Kostov, M. Staudacher, T. Wynter, “Complex matrix models and statistics of branched coverings of 2D surfaces”, Comm. Math. Phys., 191:2 (1998), 283–298 | DOI | MR | Zbl

[8] A. Okounkov, R. Pandharipande, Gromov–Witten theory, Hurwitz numbers and matrix models, I, arXiv: math/0101147

[9] M. Khovanov, L. Rozansky, “Topological Landau–Ginzburg models on a world-sheet foam”, Adv. Theor. Math. Phys., 11:2 (2007), 233–260 ; arXiv: hep-th/0404189 | MR | Zbl

[10] L. Rozansky, “Topological A-models on seamed Riemann surfaces”, Adv. Theor. Math. Phys., 11:4 (2007), 517–529 ; arXiv: hep-th/0305205 | MR | Zbl

[11] N. L. Alling, N. Greenleaf, Foundations of the theory of Klein surfaces, Lecture Notes in Math., 219, Springer-Verlag, Berlin–New York, 1971 | MR | Zbl

[12] S. M. Natanzon, “Klein surfaces”, Russian Math. Surveys, 45:6 (1990), 53–108 | DOI | MR | Zbl

[13] S. M. Natanzon, Moduli rimanovykh poverkhnostei, veschestvennykh algebraicheskii krivykh i ikh superanalogi, Novye matematicheskie distsipliny, MTsNMO, M., 2003 | MR | Zbl

[14] C. I. Lazaroiu, “On the structure of open-closed topological field theory in two dimensions”, Nuclear Phys. B, 603:3 (2001), 497–530 | DOI | MR | Zbl

[15] R. Dijkgraaf, Geometrical approach to two-dimensional conformal field theory, Ph. D. Thesis, Utrecht, 1989

[16] C. Faith, Algebra. II: Ring theory, Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, Berlin–Heidelberg–New York, 1976 | MR | Zbl