Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2008_72_3_a6, author = {D. I. Saveliev}, title = {A game on the universe of sets}, journal = {Izvestiya. Mathematics }, pages = {581--625}, publisher = {mathdoc}, volume = {72}, number = {3}, year = {2008}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2008_72_3_a6/} }
D. I. Saveliev. A game on the universe of sets. Izvestiya. Mathematics , Tome 72 (2008) no. 3, pp. 581-625. http://geodesic.mathdoc.fr/item/IM2_2008_72_3_a6/
[1] D. I. Saveliev, “A report on a game on the universe of sets”, Math. Notes, 81:5–6 (2007), 716–719 ; arXiv: math.LO/0612636 | DOI | MR
[2] A. Lévy, Basic set theory, Perspectives in Mathematical Logic, Springer-Verlag, Berlin–New York, 1979 | MR | Zbl
[3] T. Jech, Set theory, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2003 | MR | Zbl
[4] J. R. Shoenfield, “The axioms of set theory”, Handbook of mathematical logic, Part B, Set theory, Studies in Logic and Foundations of Math., 90, ed. J. Barwise, North-Holland, Amsterdam, 1977 | MR | Zbl
[5] G. Boolos, “The iterative conception of set”, Philosophy, 68:8 (1971), 215–231 | DOI
[6] P. Maddy, “Believing the axioms. I, II”, J. Symbolic Logic, 53:2 (1988), 481–511 | DOI | MR | Zbl
[7] D. I. Saveliev, Choice and regularity: common consequences in logic, arXiv: 0709.2979
[8] E. Zermelo, “Über Grenzzahlen und Mengenbereiche. Neue Untersuchungen über die Grundlagen der Mengenlehre”, Fund. Math., 16 (1930), 29–47 | Zbl
[9] E. Mendelson, “The axiom of Fundierung and the axiom of choice”, Arch. Math. Logic, 4:3–4 (1958), 65–70 | DOI | MR | Zbl
[10] L. Rieger, “A contribution to Gödel's axiomatic set theory. I”, Czechoslovak Math. J., 7(82) (1957), 323–357 | MR | Zbl
[11] P. Aczel, Non-well-founded sets, CSLI Lecture Notes, 14, Center for the Study of Language and Information, Stanford, CA, 1988 | MR | Zbl
[12] G. d'Agostino, Modal logic and non-well-founded set theory: translation, bisimulation, interpolation, Dissertation Series, 4, Institute for Logic, Language, and Computation, Amsterdam, 1998
[13] M. Forti, F. Honsell, “Set theory with free construction principles”, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4), 10:3 (1983), 493–522 | MR | Zbl
[14] J. Barwise, L. Moss, Vicious circle. On the mathematics of non-wellfounded phenomena, CSLI Lecture Notes, 60, Center for the Study of Language and Informations, Stanford, CA, 1996 | MR | Zbl
[15] A. Rieger, “An argument for Finsler–Aczel set theory”, Mind, 109:434 (2000), 241–253 | DOI | MR
[16] M. V. Marshall, M. G. Schwarze, “Rank in set theory without foundation”, Arch. Math. Logic, 38:6 (1999), 387–393 | DOI | MR | Zbl
[17] D. I. Saveliev, A note on singular cardinals in set theory without choice, arXiv: 0709.2436
[18] D. Mirimanoff, “Les antinomies de Russell et de Burali-Forti et le problème fondamental de la théorie des ensembles”, Enseign. Math., 19 (1917), 37–52 | Zbl
[19] D. Mirimanoff, “Remarques sur la théorie des ensembles et les antinomies cantoriennes. I”, Enseign. Math., 19 (1917), 209–217 | Zbl
[20] T. E. Forster, Set theory with a universal set. Exploring an untyped universe, Oxford Logic Guides, 31, The Clarendon Press, London; Oxford University Press, New York, 1995 | MR | Zbl
[21] E. Zermelo, “Über eine Anwendung der Mengenlehre auf die Theorie des Schachspiels”, Proc. 5th Intern. Congress of Math. (Cambridge, 1912), 2, Cambridge University Press, Cambridge, 1913, 501–504 | Zbl
[22] Yu. V. Glebskii, D. I. Kogan, M. I. Liogon'kii, V. A. Talanov, “Range and degree of realizability of formulas in the restricted predicate calculus”, Cybernetics and Systems Analysis, 5:2 (1969), 142–154 | DOI
[23] A. Blass, Y. Gurevich, Strong extension axioms and Shelah's zero-one law for choiceless polynomial time, MSR-TR-2001-68, 1–96
[24] M. Gitik, “All uncountable cardinals can be singular”, Israel J. Math., 35:1–2 (1980), 61–88 | DOI | MR | Zbl