Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2008_72_3_a4, author = {S. A. Nazarov}, title = {Asymptotics of solutions and modelling the problems of elasticity theory in domains with rapidly oscillating boundaries}, journal = {Izvestiya. Mathematics }, pages = {509--564}, publisher = {mathdoc}, volume = {72}, number = {3}, year = {2008}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2008_72_3_a4/} }
TY - JOUR AU - S. A. Nazarov TI - Asymptotics of solutions and modelling the problems of elasticity theory in domains with rapidly oscillating boundaries JO - Izvestiya. Mathematics PY - 2008 SP - 509 EP - 564 VL - 72 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_2008_72_3_a4/ LA - en ID - IM2_2008_72_3_a4 ER -
%0 Journal Article %A S. A. Nazarov %T Asymptotics of solutions and modelling the problems of elasticity theory in domains with rapidly oscillating boundaries %J Izvestiya. Mathematics %D 2008 %P 509-564 %V 72 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_2008_72_3_a4/ %G en %F IM2_2008_72_3_a4
S. A. Nazarov. Asymptotics of solutions and modelling the problems of elasticity theory in domains with rapidly oscillating boundaries. Izvestiya. Mathematics , Tome 72 (2008) no. 3, pp. 509-564. http://geodesic.mathdoc.fr/item/IM2_2008_72_3_a4/
[1] E. Sánchez-Palencia, Nonhomogeneous media and vibration theory, Lecture Notes in Physics, 127, Springer-Verlag, Berlin–New York, 1980 | MR | MR | Zbl
[2] E. Sánchez–Palencia, P. Suquet, “Friction and homogenization of a boundary”, Free boundary problems, theory and applications, Vol. I, II (Montecatini, 1981), Res. Notes in Math., 78, eds. A. Fasano, M. Primicerio, Pitman, Boston, MA, 1983, 561–571 | MR | Zbl
[3] S. A. Nazarov, “Two-term asymptotics of solutions of spectral problems with singular perturbations”, Math. USSR-Sb., 69:2 (1991), 307–340 | DOI | MR | Zbl
[4] Y. Achdou, O. Pironneau, “Domain decomposition and wall laws”, C. R. Acad. Sci. Paris. Sér. I. Math., 320:5 (1995), 541–547 | MR | Zbl
[5] W. Jäger, A. Mikelic, N. Neuss, “Asymptotic analysis of the laminar viscous flow over a porous bed”, SIAM J. Sci. Comput., 22:6 (2001), 2006–2028 | DOI | MR | Zbl
[6] M. Lobo, M. Pérez, “Local problems for vibrating systems with concentrated masses: a review”, C. R. Mecanique, 331:4 (2003), 303–317 | DOI
[7] Y. Amirat, G. A. Chechkin, R. R. Gadyl'shin, “Asymptotics of simple eigenvalues and eigenfunctions for the Laplace operator in a domain with an oscillating boundary”, Comput. Math. Math. Phys., 46:1 (2006), 97–110 | DOI | MR | Zbl
[8] S. A. Nazarov, “A quasistatic model of the evolution of an interface inside a deformed solid”, J. Appl. Math. Mech., 70:3 (2006), 416–429 | DOI | MR | Zbl
[9] S. A. Nazarov, Asimptoticheskaya teoriya tonkikh plastin i sterzhnei. Ponizhenie razmernosti i integralnye otsenki, Nauchnaya kniga, Novosibirsk, 2001
[10] S. A. Nazarov, “Asymptotic conditions at a point, selfadjoint extensions of operators, and the method of matched asymptotic expansions”, Trans. Am. Math. Soc. Ser. 2, 193 (1999), 77–126 | MR
[11] I. V. Kamotskii, S. A. Nazarov, “Spectral problems in singularly perturbed domains and selfadjoint extensions of differential operators”, Trans. Am. Math. Soc. Ser. 2, 199 (2000), 127–181 | MR | MR
[12] S. A. Nazarov, J. Sokolowski, “Asymptotic analysis of shape functionals”, J. Math. Pures Appl. (9), 82:2 (2003), 125–196 | DOI | MR | Zbl
[13] S. A. Nazarov, J. Sokolowski, “Self-adjoint extensions for the Neumann Laplacian and applications”, Acta Math. Sin., 22:3 (2006), 879–906 | DOI | MR | Zbl
[14] I. S. Zorin, S. A. Nazarov, “Edge effect in the bending of a thin three-dimensional plate”, J. Appl. Math. Mech., 53:4 (1989), 500–507 | DOI | MR | Zbl
[15] I. S. Zorin, S. A. Nazarov, “Dvuchlennaya asimptotika resheniya zadachi o prodolnoi deformatsii plastiny, zaschemlennoi po krayu”, Vychisl. mekhanika deform. tverdogo tela, 1992, no. 2, 10–21
[16] S. A. Nazarov, “On three-dimensional effects near the vertex of a crack in a thin plate”, J. Appl. Math. Mech., 55:3 (1991), 407–415 | DOI | MR | Zbl
[17] S. A. Nazarov, “Boundary layers and boundary hinge-support conditions for thin plates”, J. Math. Sci., 108:5 (2002), 806–850 | DOI | MR | Zbl
[18] O. A. Ladyzhenskaya, Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR
[19] B. Mohammadi, O. Pironneau, F. Valentin, “Rough boundaries and wall laws”, Internat. J. Numer. Methods Fluids, 27:1–4 (1998), 169–177 | 3.0.CO;2-4 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[20] Y. Achdou, O. Pironneau, F. Valentin, “Effective boundary conditions for laminar flows over periodic rough boundaries”, J. Comput. Phys., 147:1 (1998), 187–218 | DOI | MR | Zbl
[21] W. Jäger, A. Micelić, “On the roughness-induced effective boundary conditions for an incompressible viscous flow”, J. Differential Equations, 170:1 (2001), 96–122 | DOI | MR | Zbl
[22] S. A. Nazarov, “Self-adjoint elliptic boundary-value problems. The polynomial property and formally positive operators”, J. Math. Sci., 92:6 (1998), 4338–4353 | DOI | MR
[23] S. A. Nazarov, “The polynomial property of self-adjoint elliptic boundary-value problems and an algebraic description of their attributes”, Russian Math. Surveys, 54:5 (1999), 947–1014 | DOI | MR | Zbl
[24] S. A. Nazarov, B. A. Plamenevskii, Ellipticheskie zadachi v oblastyakh s kusochno gladkoi granitsei, Nauka, M., 1991; S. A. Nazarov, B. A. Plamenevsky, Elliptic problems in domains with piecewise smooth boundaries, de Gruyter Expositions in Mathematics, 13, Walter de Gruyter, Berlin, 1994 | MR | Zbl
[25] J. K. Knowles, “On Saint-Venant's principle in the two-dimensional linear theory of elasticity”, Arch. Ration. Mech. Anal., 21:1 (1966), 1–22 | DOI | MR
[26] O. A. Oleinik, G. A. Yosifian, “On the asymptotic behavior at infinity of solutions in linear elasticity”, Arch. Ration. Mech. Anal., 78:1 (1982), 29–53 | DOI | MR | Zbl
[27] B. Mielke, “On Saint-Venant's problem for an elastic strip”, Proc. Roy. Soc. Edinburgh Sect. A, 110:1–2 (1988), 161–181 | MR | Zbl
[28] S. A. Nazarov, A. S. Slutskii, “Saint-Venant principle for paraboloidal elastic bodies”, J. Math. Sci., 98:6 (2000), 717–752 | DOI | MR
[29] G. Poĺya, G. Szegö, Isoperimetric inequalties in mathematical physics, Annals of Mathematics Studies, 27, Princeton University Press, Princeton, N.J., 1951 | MR | MR | Zbl | Zbl
[30] N. S. Landkof, Osnovy sovremennoi teorii potentsiala, Nauka, M., 1966 | MR | Zbl
[31] I. S. Zorin, A. B. Movchan, S. A. Nazarov, “O primenenii tenzorov uprugoi emkosti, polyarizatsii i prisoedinennoi deformatsii”, Issledovaniya po uprugosti i plastichnosti, Vyp. 16, 207, LGU, L., 1990, 75–91 | MR
[32] S. A. Nazarov, “The damage tensor and measures. 1. Asymptotic analysis of anisotropic media with defects”, Mechanics of Solids, 35:3 (2000), 96–105
[33] V. A. Kondrat'ev. O. A. Oleinik, “Boundary-value problems for the system of elasticity theory in unbounded domains. Korn's inequalities”, Russian Math. Surveys, 43:5 (1988), 65–119 | DOI | MR | Zbl | Zbl
[34] S. A. Nazarov, “Justification of the asymptotic theory of thin rods. Integral and pointwise estimates”, J. Math. Sci., 97:4 (1999), 4245–4279 | DOI | MR
[35] T. Kato, Perturbation theory for linear operators, Die Grundlehren der mathematischen Wissenschaften, 132, Springer-Verlag, Berlin–Heidelberg–New York, 1966 | MR | MR | Zbl | Zbl
[36] V. V. Lukyanov, A. I. Nazarov, “Solving the Venttsel problem for the Laplace and Helmholtz equations with the help of iterated potentials”, J. Math. Sci., 102:4 (2000), 4265–4274 | DOI | MR | Zbl
[37] M. Costabel, W. Wendland, “Strong ellipticity of boundary integral operators”, J. Reine Angew. Math., 372 (1986), 34–63 | MR | Zbl
[38] D. G. Natroshvili, O. O. Chkadua, E. M. Shargorodsky, “Mixed problem for homogeneous anisotropic elastic media”, Tbiliss. Gos. Univ. Inst. Prikl. Mat. Trudy, 39 (1990), 133–181 | MR | Zbl
[39] M. Taylor, Pseudodifferential operators, Princeton Mathematical Series, 34, Princeton University Press, Princeton, N.J., 1981 | MR | MR | Zbl
[40] G. Fikera, Teoremy suschestvovaniya v teorii uprugosti, Mir, M., 1974
[41] V. Girault, P.-A. Raviart, “Finite element methods for Navier–Stokes equations. Theory and algorithms”, Springer Series in Computational Mathematics, 5, Springer-Verlag, Berlin, 1986 | MR | Zbl
[42] M. S. Birman, M. Z. Solomyak, Spectral Theory of Self-Adjoint Operators in Hilbert Space, Reidel Publishing Company, Dordrecht, 1986 | MR
[43] M. I. Vishik, L. A. Lyusternik, “Regulyarnoe vyrozhdenie i pogranichnyi sloi dlya lineinykh differentsialnykh uravnenii s malym parametrom”, UMN, 12:5 (1957), 3–122 | MR | Zbl
[44] J.-L. Lions, E. Magenes, Problèmes aux limites non homogènes et applications, Vol. 1, Travaux et Recherches Mathématiques, 17, Dunod, Paris, 1968 | MR | MR | Zbl | Zbl
[45] S. G. Mikhlin, Variatsionnye metody v matematicheskoi fizike, Nauka, M., 1970 | MR | Zbl
[46] I. Babuška, “Stabilität der Definitionsbereiche in bezug auf die Hauptaufgaben der Theorie der partiellen Differentialgleichungen, hauptsächlich im Zusammenhang mit der Elastizitätstheorie. I, II”, Czechoslovak Math. J., 11(86) (1961), 76–105, 165–203 | MR | Zbl
[47] V. G. Maz'ya, S. A. Nazarov, “Paradoxes of limit passage in solutions of boundary value problems involving the approximation of smooth domains by polygonal domains”, Math. USSR-Izv., 29:3, 511–533 | DOI | MR | Zbl
[48] I. Babuška, J. Pitkäranta, “The plate paradox for hard and soft simple support”, SIAM J. Math. Anal., 21:3 (1990), 551–576 | DOI | MR | Zbl
[49] S. A. Nazarov, M. V. Olyushin, “Approximation of smooth contours by polygonal ones. Paradoxes in problems for the Lame system”, Izv. Math., 61:3 (1997), 619–646 | DOI | MR | Zbl
[50] W. G. Mazja, S. A. Nasarow, B. A. Plamenewski, Asymptotische Theorie elliptischer Randwertaufgaben in singulär gestörten Gebieten. II. Nichtlokale Störungen, Vol. II, Math. Lehrbücher und Monogr., 83, Akademie-Verlag, Berlin, 1991 ; V. Maz'ya, S. Nazarov, B. Plamenevskij, Asymptotic theory of elliptic boundary value problems in singularly perturbed domains, Vol. II, Operator Theory: Advances and Applications, 112, Birkhäuser Verlag, Basel, 2000 | MR | Zbl | MR | Zbl
[51] N. F. Morozov, S. A. Nazarov, A. V. Proskura, “Kraevye zadachi teorii uprugosti dlya ploskikh oblastei s tonkimi okaimleniyami”, Mekhanika deformiruemykh tel, Nauka, M., 1986, 82–93