Asymptotics of solutions and modelling the problems of elasticity theory in domains with rapidly oscillating boundaries
Izvestiya. Mathematics , Tome 72 (2008) no. 3, pp. 509-564.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain explicit formulae for two terms of asymptotics of solutions of the Neumann and Dirichlet problems for the system of two-dimensional equations of elasticity theory in a domain with rapidly oscillating boundary and suggest an algorithm for constructing complete asymptotic expansions. We justify the asymptotic representations of solutions using Korn's inequality in singularly perturbed domains. We discuss two methods of modelling these problems of elasticity theory by constructing new, simpler, boundary-value problems whose solutions provide two-term asymptotics of solutions of the original problems. The first method is based on the introduction of the so-called wall laws containing a small parameter in the higher derivatives. The second method is based on the use of the concept of a smooth image of the singularly perturbed boundary.
@article{IM2_2008_72_3_a4,
     author = {S. A. Nazarov},
     title = {Asymptotics of solutions and modelling the problems of elasticity theory in domains with rapidly oscillating boundaries},
     journal = {Izvestiya. Mathematics },
     pages = {509--564},
     publisher = {mathdoc},
     volume = {72},
     number = {3},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2008_72_3_a4/}
}
TY  - JOUR
AU  - S. A. Nazarov
TI  - Asymptotics of solutions and modelling the problems of elasticity theory in domains with rapidly oscillating boundaries
JO  - Izvestiya. Mathematics 
PY  - 2008
SP  - 509
EP  - 564
VL  - 72
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2008_72_3_a4/
LA  - en
ID  - IM2_2008_72_3_a4
ER  - 
%0 Journal Article
%A S. A. Nazarov
%T Asymptotics of solutions and modelling the problems of elasticity theory in domains with rapidly oscillating boundaries
%J Izvestiya. Mathematics 
%D 2008
%P 509-564
%V 72
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2008_72_3_a4/
%G en
%F IM2_2008_72_3_a4
S. A. Nazarov. Asymptotics of solutions and modelling the problems of elasticity theory in domains with rapidly oscillating boundaries. Izvestiya. Mathematics , Tome 72 (2008) no. 3, pp. 509-564. http://geodesic.mathdoc.fr/item/IM2_2008_72_3_a4/

[1] E. Sánchez-Palencia, Nonhomogeneous media and vibration theory, Lecture Notes in Physics, 127, Springer-Verlag, Berlin–New York, 1980 | MR | MR | Zbl

[2] E. Sánchez–Palencia, P. Suquet, “Friction and homogenization of a boundary”, Free boundary problems, theory and applications, Vol. I, II (Montecatini, 1981), Res. Notes in Math., 78, eds. A. Fasano, M. Primicerio, Pitman, Boston, MA, 1983, 561–571 | MR | Zbl

[3] S. A. Nazarov, “Two-term asymptotics of solutions of spectral problems with singular perturbations”, Math. USSR-Sb., 69:2 (1991), 307–340 | DOI | MR | Zbl

[4] Y. Achdou, O. Pironneau, “Domain decomposition and wall laws”, C. R. Acad. Sci. Paris. Sér. I. Math., 320:5 (1995), 541–547 | MR | Zbl

[5] W. Jäger, A. Mikelic, N. Neuss, “Asymptotic analysis of the laminar viscous flow over a porous bed”, SIAM J. Sci. Comput., 22:6 (2001), 2006–2028 | DOI | MR | Zbl

[6] M. Lobo, M. Pérez, “Local problems for vibrating systems with concentrated masses: a review”, C. R. Mecanique, 331:4 (2003), 303–317 | DOI

[7] Y. Amirat, G. A. Chechkin, R. R. Gadyl'shin, “Asymptotics of simple eigenvalues and eigenfunctions for the Laplace operator in a domain with an oscillating boundary”, Comput. Math. Math. Phys., 46:1 (2006), 97–110 | DOI | MR | Zbl

[8] S. A. Nazarov, “A quasistatic model of the evolution of an interface inside a deformed solid”, J. Appl. Math. Mech., 70:3 (2006), 416–429 | DOI | MR | Zbl

[9] S. A. Nazarov, Asimptoticheskaya teoriya tonkikh plastin i sterzhnei. Ponizhenie razmernosti i integralnye otsenki, Nauchnaya kniga, Novosibirsk, 2001

[10] S. A. Nazarov, “Asymptotic conditions at a point, selfadjoint extensions of operators, and the method of matched asymptotic expansions”, Trans. Am. Math. Soc. Ser. 2, 193 (1999), 77–126 | MR

[11] I. V. Kamotskii, S. A. Nazarov, “Spectral problems in singularly perturbed domains and selfadjoint extensions of differential operators”, Trans. Am. Math. Soc. Ser. 2, 199 (2000), 127–181 | MR | MR

[12] S. A. Nazarov, J. Sokolowski, “Asymptotic analysis of shape functionals”, J. Math. Pures Appl. (9), 82:2 (2003), 125–196 | DOI | MR | Zbl

[13] S. A. Nazarov, J. Sokolowski, “Self-adjoint extensions for the Neumann Laplacian and applications”, Acta Math. Sin., 22:3 (2006), 879–906 | DOI | MR | Zbl

[14] I. S. Zorin, S. A. Nazarov, “Edge effect in the bending of a thin three-dimensional plate”, J. Appl. Math. Mech., 53:4 (1989), 500–507 | DOI | MR | Zbl

[15] I. S. Zorin, S. A. Nazarov, “Dvuchlennaya asimptotika resheniya zadachi o prodolnoi deformatsii plastiny, zaschemlennoi po krayu”, Vychisl. mekhanika deform. tverdogo tela, 1992, no. 2, 10–21

[16] S. A. Nazarov, “On three-dimensional effects near the vertex of a crack in a thin plate”, J. Appl. Math. Mech., 55:3 (1991), 407–415 | DOI | MR | Zbl

[17] S. A. Nazarov, “Boundary layers and boundary hinge-support conditions for thin plates”, J. Math. Sci., 108:5 (2002), 806–850 | DOI | MR | Zbl

[18] O. A. Ladyzhenskaya, Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR

[19] B. Mohammadi, O. Pironneau, F. Valentin, “Rough boundaries and wall laws”, Internat. J. Numer. Methods Fluids, 27:1–4 (1998), 169–177 | 3.0.CO;2-4 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[20] Y. Achdou, O. Pironneau, F. Valentin, “Effective boundary conditions for laminar flows over periodic rough boundaries”, J. Comput. Phys., 147:1 (1998), 187–218 | DOI | MR | Zbl

[21] W. Jäger, A. Micelić, “On the roughness-induced effective boundary conditions for an incompressible viscous flow”, J. Differential Equations, 170:1 (2001), 96–122 | DOI | MR | Zbl

[22] S. A. Nazarov, “Self-adjoint elliptic boundary-value problems. The polynomial property and formally positive operators”, J. Math. Sci., 92:6 (1998), 4338–4353 | DOI | MR

[23] S. A. Nazarov, “The polynomial property of self-adjoint elliptic boundary-value problems and an algebraic description of their attributes”, Russian Math. Surveys, 54:5 (1999), 947–1014 | DOI | MR | Zbl

[24] S. A. Nazarov, B. A. Plamenevskii, Ellipticheskie zadachi v oblastyakh s kusochno gladkoi granitsei, Nauka, M., 1991; S. A. Nazarov, B. A. Plamenevsky, Elliptic problems in domains with piecewise smooth boundaries, de Gruyter Expositions in Mathematics, 13, Walter de Gruyter, Berlin, 1994 | MR | Zbl

[25] J. K. Knowles, “On Saint-Venant's principle in the two-dimensional linear theory of elasticity”, Arch. Ration. Mech. Anal., 21:1 (1966), 1–22 | DOI | MR

[26] O. A. Oleinik, G. A. Yosifian, “On the asymptotic behavior at infinity of solutions in linear elasticity”, Arch. Ration. Mech. Anal., 78:1 (1982), 29–53 | DOI | MR | Zbl

[27] B. Mielke, “On Saint-Venant's problem for an elastic strip”, Proc. Roy. Soc. Edinburgh Sect. A, 110:1–2 (1988), 161–181 | MR | Zbl

[28] S. A. Nazarov, A. S. Slutskii, “Saint-Venant principle for paraboloidal elastic bodies”, J. Math. Sci., 98:6 (2000), 717–752 | DOI | MR

[29] G. Poĺya, G. Szegö, Isoperimetric inequalties in mathematical physics, Annals of Mathematics Studies, 27, Princeton University Press, Princeton, N.J., 1951 | MR | MR | Zbl | Zbl

[30] N. S. Landkof, Osnovy sovremennoi teorii potentsiala, Nauka, M., 1966 | MR | Zbl

[31] I. S. Zorin, A. B. Movchan, S. A. Nazarov, “O primenenii tenzorov uprugoi emkosti, polyarizatsii i prisoedinennoi deformatsii”, Issledovaniya po uprugosti i plastichnosti, Vyp. 16, 207, LGU, L., 1990, 75–91 | MR

[32] S. A. Nazarov, “The damage tensor and measures. 1. Asymptotic analysis of anisotropic media with defects”, Mechanics of Solids, 35:3 (2000), 96–105

[33] V. A. Kondrat'ev. O. A. Oleinik, “Boundary-value problems for the system of elasticity theory in unbounded domains. Korn's inequalities”, Russian Math. Surveys, 43:5 (1988), 65–119 | DOI | MR | Zbl | Zbl

[34] S. A. Nazarov, “Justification of the asymptotic theory of thin rods. Integral and pointwise estimates”, J. Math. Sci., 97:4 (1999), 4245–4279 | DOI | MR

[35] T. Kato, Perturbation theory for linear operators, Die Grundlehren der mathematischen Wissenschaften, 132, Springer-Verlag, Berlin–Heidelberg–New York, 1966 | MR | MR | Zbl | Zbl

[36] V. V. Lukyanov, A. I. Nazarov, “Solving the Venttsel problem for the Laplace and Helmholtz equations with the help of iterated potentials”, J. Math. Sci., 102:4 (2000), 4265–4274 | DOI | MR | Zbl

[37] M. Costabel, W. Wendland, “Strong ellipticity of boundary integral operators”, J. Reine Angew. Math., 372 (1986), 34–63 | MR | Zbl

[38] D. G. Natroshvili, O. O. Chkadua, E. M. Shargorodsky, “Mixed problem for homogeneous anisotropic elastic media”, Tbiliss. Gos. Univ. Inst. Prikl. Mat. Trudy, 39 (1990), 133–181 | MR | Zbl

[39] M. Taylor, Pseudodifferential operators, Princeton Mathematical Series, 34, Princeton University Press, Princeton, N.J., 1981 | MR | MR | Zbl

[40] G. Fikera, Teoremy suschestvovaniya v teorii uprugosti, Mir, M., 1974

[41] V. Girault, P.-A. Raviart, “Finite element methods for Navier–Stokes equations. Theory and algorithms”, Springer Series in Computational Mathematics, 5, Springer-Verlag, Berlin, 1986 | MR | Zbl

[42] M. S. Birman, M. Z. Solomyak, Spectral Theory of Self-Adjoint Operators in Hilbert Space, Reidel Publishing Company, Dordrecht, 1986 | MR

[43] M. I. Vishik, L. A. Lyusternik, “Regulyarnoe vyrozhdenie i pogranichnyi sloi dlya lineinykh differentsialnykh uravnenii s malym parametrom”, UMN, 12:5 (1957), 3–122 | MR | Zbl

[44] J.-L. Lions, E. Magenes, Problèmes aux limites non homogènes et applications, Vol. 1, Travaux et Recherches Mathématiques, 17, Dunod, Paris, 1968 | MR | MR | Zbl | Zbl

[45] S. G. Mikhlin, Variatsionnye metody v matematicheskoi fizike, Nauka, M., 1970 | MR | Zbl

[46] I. Babuška, “Stabilität der Definitionsbereiche in bezug auf die Hauptaufgaben der Theorie der partiellen Differentialgleichungen, hauptsächlich im Zusammenhang mit der Elastizitätstheorie. I, II”, Czechoslovak Math. J., 11(86) (1961), 76–105, 165–203 | MR | Zbl

[47] V. G. Maz'ya, S. A. Nazarov, “Paradoxes of limit passage in solutions of boundary value problems involving the approximation of smooth domains by polygonal domains”, Math. USSR-Izv., 29:3, 511–533 | DOI | MR | Zbl

[48] I. Babuška, J. Pitkäranta, “The plate paradox for hard and soft simple support”, SIAM J. Math. Anal., 21:3 (1990), 551–576 | DOI | MR | Zbl

[49] S. A. Nazarov, M. V. Olyushin, “Approximation of smooth contours by polygonal ones. Paradoxes in problems for the Lame system”, Izv. Math., 61:3 (1997), 619–646 | DOI | MR | Zbl

[50] W. G. Mazja, S. A. Nasarow, B. A. Plamenewski, Asymptotische Theorie elliptischer Randwertaufgaben in singulär gestörten Gebieten. II. Nichtlokale Störungen, Vol. II, Math. Lehrbücher und Monogr., 83, Akademie-Verlag, Berlin, 1991 ; V. Maz'ya, S. Nazarov, B. Plamenevskij, Asymptotic theory of elliptic boundary value problems in singularly perturbed domains, Vol. II, Operator Theory: Advances and Applications, 112, Birkhäuser Verlag, Basel, 2000 | MR | Zbl | MR | Zbl

[51] N. F. Morozov, S. A. Nazarov, A. V. Proskura, “Kraevye zadachi teorii uprugosti dlya ploskikh oblastei s tonkimi okaimleniyami”, Mekhanika deformiruemykh tel, Nauka, M., 1986, 82–93