Explicit correspondences of a K3 surface with itself
Izvestiya. Mathematics , Tome 72 (2008) no. 3, pp. 497-508

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X$ be a K3-surface with a polarization $H$ of degree $H^2=2rs$, $r,s\geqslant1$. We consider the moduli space $Y$ of sheaves over $X$ with a primitive isotropic Mukai vector $(r,H,s)$. This space is again a K3-surface. In earlier papers, we gave necessary and sufficient conditions (in terms of the Picard lattice $N(X)$) for $Y$ and $X$ to be isomorphic. Here we show that these conditions imply the existence of an isomorphism between $Y$ and $X$ which is a composite of certain universal geometric isomorphisms between moduli of sheaves over $X$ and Tyurin's geometric isomorphism between moduli of sheaves over $X$ and $X$ itself. It follows that a general K3-surface $X$ with $\rho(X)=\operatorname{rk}N(X)\leqslant2$ is isomorphic to $Y$ if and only if there is an isomorphism $Y\cong X$ which is a composite of universal isomorphisms and Tyurin's isomorphism.
@article{IM2_2008_72_3_a3,
     author = {C. G. Madonna and V. V. Nikulin},
     title = {Explicit correspondences of a {K3} surface with itself},
     journal = {Izvestiya. Mathematics },
     pages = {497--508},
     publisher = {mathdoc},
     volume = {72},
     number = {3},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2008_72_3_a3/}
}
TY  - JOUR
AU  - C. G. Madonna
AU  - V. V. Nikulin
TI  - Explicit correspondences of a K3 surface with itself
JO  - Izvestiya. Mathematics 
PY  - 2008
SP  - 497
EP  - 508
VL  - 72
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2008_72_3_a3/
LA  - en
ID  - IM2_2008_72_3_a3
ER  - 
%0 Journal Article
%A C. G. Madonna
%A V. V. Nikulin
%T Explicit correspondences of a K3 surface with itself
%J Izvestiya. Mathematics 
%D 2008
%P 497-508
%V 72
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2008_72_3_a3/
%G en
%F IM2_2008_72_3_a3
C. G. Madonna; V. V. Nikulin. Explicit correspondences of a K3 surface with itself. Izvestiya. Mathematics , Tome 72 (2008) no. 3, pp. 497-508. http://geodesic.mathdoc.fr/item/IM2_2008_72_3_a3/