Explicit correspondences of a K3 surface with itself
Izvestiya. Mathematics , Tome 72 (2008) no. 3, pp. 497-508.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X$ be a K3-surface with a polarization $H$ of degree $H^2=2rs$, $r,s\geqslant1$. We consider the moduli space $Y$ of sheaves over $X$ with a primitive isotropic Mukai vector $(r,H,s)$. This space is again a K3-surface. In earlier papers, we gave necessary and sufficient conditions (in terms of the Picard lattice $N(X)$) for $Y$ and $X$ to be isomorphic. Here we show that these conditions imply the existence of an isomorphism between $Y$ and $X$ which is a composite of certain universal geometric isomorphisms between moduli of sheaves over $X$ and Tyurin's geometric isomorphism between moduli of sheaves over $X$ and $X$ itself. It follows that a general K3-surface $X$ with $\rho(X)=\operatorname{rk}N(X)\leqslant2$ is isomorphic to $Y$ if and only if there is an isomorphism $Y\cong X$ which is a composite of universal isomorphisms and Tyurin's isomorphism.
@article{IM2_2008_72_3_a3,
     author = {C. G. Madonna and V. V. Nikulin},
     title = {Explicit correspondences of a {K3} surface with itself},
     journal = {Izvestiya. Mathematics },
     pages = {497--508},
     publisher = {mathdoc},
     volume = {72},
     number = {3},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2008_72_3_a3/}
}
TY  - JOUR
AU  - C. G. Madonna
AU  - V. V. Nikulin
TI  - Explicit correspondences of a K3 surface with itself
JO  - Izvestiya. Mathematics 
PY  - 2008
SP  - 497
EP  - 508
VL  - 72
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2008_72_3_a3/
LA  - en
ID  - IM2_2008_72_3_a3
ER  - 
%0 Journal Article
%A C. G. Madonna
%A V. V. Nikulin
%T Explicit correspondences of a K3 surface with itself
%J Izvestiya. Mathematics 
%D 2008
%P 497-508
%V 72
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2008_72_3_a3/
%G en
%F IM2_2008_72_3_a3
C. G. Madonna; V. V. Nikulin. Explicit correspondences of a K3 surface with itself. Izvestiya. Mathematics , Tome 72 (2008) no. 3, pp. 497-508. http://geodesic.mathdoc.fr/item/IM2_2008_72_3_a3/

[1] C. G. Madonna, “On some moduli spaces of bundles on K3 surfaces”, Monatsh. Math., 146:4 (2005), 333–339 | DOI | MR | Zbl

[2] K. G. Madonna, V. V. Nikulin, “O klassicheskom sootvetstvii mezhdu poverkhnostyami K3”, Tr. MIAN, 241, 2003, 132–168 | MR | Zbl

[3] C. G. Madonna, V. V. Nikulin, “On a classical correspondence between $K3$ surfaces. II”, Strings and geometry, Clay Math. Proc., 3, AMS, Providence, RI, 2004, 285–300 | MR

[4] C. G. Madonna, V. V. Nikulin, On a classical correspondence between $\mathrm{K}3$ surfaces. III, arXiv: math/0605362

[5] C. G. Madonna, V. V. Nikulin, On correspondences of a $\mathrm{K}3$ surface with itself. III, arXiv: math/0606239

[6] C. G. Madonna, V. V. Nikulin, On correspondences of a $\mathrm{K}3$ surface with itself. IV, arXiv: math/0606289

[7] Sh. Mukai, “On the moduli space of bundles on K3 surfaces. I”, Vector bundles on algebraic varieties (Bombay, 1984), Tata Inst. Fund. Res. Stud. Math., 11, 1987, 341–413 | MR | Zbl

[8] Sh. Mukai, “Symplectic structure of the moduli space of sheaves on an abelian or K3 surface”, Invent. Math., 77:1 (1984), 101–116 | DOI | MR | Zbl

[9] Sh. Mukai, “Duality of polarized $K3$ surfaces”, New trends in algebraic geometry. Selected papers presented at the Euro conference (Warwick, UK, July 1996), London Math. Soc. Lect. Notes, 264, Cambridge University Press, Cambridge, 1999, 311–326 | MR | Zbl

[10] V. V. Nikulin, “Konechnye gruppy avtomorfizmov kelerovykh poverkhnostei tipa $K3$”, Tr. MMO, 38 (1979), 75–137 | MR | Zbl

[11] V. V. Nikulin, “O sootvetstviyakh mezhdu poverkhnostyami tipa K3”, Izv. AN SSSR. Ser. matem., 51:2 (1987), 402–411 ; V. V. Nikulin, “On correspondences between surfaces of K3 type”, Math. USSR-Izv., 30:2 (1998), 375–383 | MR | Zbl | DOI

[12] V. V. Nikulin, “O sootvetstviyakh poverkhnosti K3 s soboi. I”, Tr. MIAN, 246 (2004), 217–239 | MR | Zbl

[13] V. V. Nikulin, “On correspondences of a $K3$ surface with itself. II”, Algebraic geometry, Korea-Japan conference in honor of Igor Dolgachev's 60th birthday (Seoul, Korea, July 5–9, 2004), Contemp. Math., no. 422, 2007, 121–172 | MR | Zbl

[14] I. I. Pyatetskii-Shapiro, I. R. Shafarevich, “Teorema Torelli dlya algebraicheskikh poverkhnostei tipa K3”, Izv. AN SSSR. Ser. matem., 35:3 (1971), 530–572 | MR | Zbl

[15] A. N. Tyurin, “Cycles, curves and vector bundles on algebraic surfaces”, Duke Math. J., 54:1 (1987), 1–26 | DOI | MR | Zbl

[16] A. N. Tyurin, “Spetsialnye 0-tsikly na polyarizovannoi poverkhnosti tipa $K3$”, Izv. AN SSSR. Ser. matem., 51:1 (1987), 131–151 ; A. N. Tyurin, “Special $0$-cycles on a polarized surface of type K3”, Math. USSR-Izv., 30:1 (1988), 123–143 | MR | Zbl | DOI

[17] A. N. Tyurin, “Simplekticheskie struktury na mnogoobrazii modulei vektornykh rassloenii na algebraicheskikh poverkhnostyakh s $p_g>0$”, Izv. AN SSSR. Ser. matem., 52:4 (1988), 813–852 ; A. N. Tyurin, “Symplectic structures on the varieties of moduli of vector bundles on algebraic surfaces with $p_g>0$”, Math. USSR-Izv., 33:1 (1989), 139–177 | MR | Zbl | DOI