Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2008_72_3_a3, author = {C. G. Madonna and V. V. Nikulin}, title = {Explicit correspondences of a {K3} surface with itself}, journal = {Izvestiya. Mathematics }, pages = {497--508}, publisher = {mathdoc}, volume = {72}, number = {3}, year = {2008}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2008_72_3_a3/} }
C. G. Madonna; V. V. Nikulin. Explicit correspondences of a K3 surface with itself. Izvestiya. Mathematics , Tome 72 (2008) no. 3, pp. 497-508. http://geodesic.mathdoc.fr/item/IM2_2008_72_3_a3/
[1] C. G. Madonna, “On some moduli spaces of bundles on K3 surfaces”, Monatsh. Math., 146:4 (2005), 333–339 | DOI | MR | Zbl
[2] K. G. Madonna, V. V. Nikulin, “O klassicheskom sootvetstvii mezhdu poverkhnostyami K3”, Tr. MIAN, 241, 2003, 132–168 | MR | Zbl
[3] C. G. Madonna, V. V. Nikulin, “On a classical correspondence between $K3$ surfaces. II”, Strings and geometry, Clay Math. Proc., 3, AMS, Providence, RI, 2004, 285–300 | MR
[4] C. G. Madonna, V. V. Nikulin, On a classical correspondence between $\mathrm{K}3$ surfaces. III, arXiv: math/0605362
[5] C. G. Madonna, V. V. Nikulin, On correspondences of a $\mathrm{K}3$ surface with itself. III, arXiv: math/0606239
[6] C. G. Madonna, V. V. Nikulin, On correspondences of a $\mathrm{K}3$ surface with itself. IV, arXiv: math/0606289
[7] Sh. Mukai, “On the moduli space of bundles on K3 surfaces. I”, Vector bundles on algebraic varieties (Bombay, 1984), Tata Inst. Fund. Res. Stud. Math., 11, 1987, 341–413 | MR | Zbl
[8] Sh. Mukai, “Symplectic structure of the moduli space of sheaves on an abelian or K3 surface”, Invent. Math., 77:1 (1984), 101–116 | DOI | MR | Zbl
[9] Sh. Mukai, “Duality of polarized $K3$ surfaces”, New trends in algebraic geometry. Selected papers presented at the Euro conference (Warwick, UK, July 1996), London Math. Soc. Lect. Notes, 264, Cambridge University Press, Cambridge, 1999, 311–326 | MR | Zbl
[10] V. V. Nikulin, “Konechnye gruppy avtomorfizmov kelerovykh poverkhnostei tipa $K3$”, Tr. MMO, 38 (1979), 75–137 | MR | Zbl
[11] V. V. Nikulin, “O sootvetstviyakh mezhdu poverkhnostyami tipa K3”, Izv. AN SSSR. Ser. matem., 51:2 (1987), 402–411 ; V. V. Nikulin, “On correspondences between surfaces of K3 type”, Math. USSR-Izv., 30:2 (1998), 375–383 | MR | Zbl | DOI
[12] V. V. Nikulin, “O sootvetstviyakh poverkhnosti K3 s soboi. I”, Tr. MIAN, 246 (2004), 217–239 | MR | Zbl
[13] V. V. Nikulin, “On correspondences of a $K3$ surface with itself. II”, Algebraic geometry, Korea-Japan conference in honor of Igor Dolgachev's 60th birthday (Seoul, Korea, July 5–9, 2004), Contemp. Math., no. 422, 2007, 121–172 | MR | Zbl
[14] I. I. Pyatetskii-Shapiro, I. R. Shafarevich, “Teorema Torelli dlya algebraicheskikh poverkhnostei tipa K3”, Izv. AN SSSR. Ser. matem., 35:3 (1971), 530–572 | MR | Zbl
[15] A. N. Tyurin, “Cycles, curves and vector bundles on algebraic surfaces”, Duke Math. J., 54:1 (1987), 1–26 | DOI | MR | Zbl
[16] A. N. Tyurin, “Spetsialnye 0-tsikly na polyarizovannoi poverkhnosti tipa $K3$”, Izv. AN SSSR. Ser. matem., 51:1 (1987), 131–151 ; A. N. Tyurin, “Special $0$-cycles on a polarized surface of type K3”, Math. USSR-Izv., 30:1 (1988), 123–143 | MR | Zbl | DOI
[17] A. N. Tyurin, “Simplekticheskie struktury na mnogoobrazii modulei vektornykh rassloenii na algebraicheskikh poverkhnostyakh s $p_g>0$”, Izv. AN SSSR. Ser. matem., 52:4 (1988), 813–852 ; A. N. Tyurin, “Symplectic structures on the varieties of moduli of vector bundles on algebraic surfaces with $p_g>0$”, Math. USSR-Izv., 33:1 (1989), 139–177 | MR | Zbl | DOI