On the integral of Hardy's function $Z(t)$
Izvestiya. Mathematics , Tome 72 (2008) no. 3, pp. 429-478.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove asymptotic formulae for the values of the integral of Hardy's function $Z(t)$ at special points and obtain an omega-theorem and an upper bound for the integral of $Z(t)$ that are sharp with respect to the rate of growth.
@article{IM2_2008_72_3_a1,
     author = {M. A. Korolev},
     title = {On the integral of {Hardy's} function $Z(t)$},
     journal = {Izvestiya. Mathematics },
     pages = {429--478},
     publisher = {mathdoc},
     volume = {72},
     number = {3},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2008_72_3_a1/}
}
TY  - JOUR
AU  - M. A. Korolev
TI  - On the integral of Hardy's function $Z(t)$
JO  - Izvestiya. Mathematics 
PY  - 2008
SP  - 429
EP  - 478
VL  - 72
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2008_72_3_a1/
LA  - en
ID  - IM2_2008_72_3_a1
ER  - 
%0 Journal Article
%A M. A. Korolev
%T On the integral of Hardy's function $Z(t)$
%J Izvestiya. Mathematics 
%D 2008
%P 429-478
%V 72
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2008_72_3_a1/
%G en
%F IM2_2008_72_3_a1
M. A. Korolev. On the integral of Hardy's function $Z(t)$. Izvestiya. Mathematics , Tome 72 (2008) no. 3, pp. 429-478. http://geodesic.mathdoc.fr/item/IM2_2008_72_3_a1/

[1] S. M. Voronin, A. A. Karatsuba, Dzeta-funktsiya Rimana, Fizmatlit, M., 1994 ; A. A. Karatsuba, S. M. Voronin, The Riemann zeta-function, de Gruyter Expositions in Mathematics, 5, Walter de Gruyter, Berlin, 1992 | MR | Zbl | MR | Zbl

[2] E. Landau, Vorlesungen über Zahlentheorie, S. Hirzel, Leipzig, 1927 | Zbl

[3] K. Chandrasekkharan, Arifmeticheskie funktsii, Nauka, M., 1975 ; K. Chandrasekharan, Arithmetical functions, Die Grundlehren der mathematischen Wissenschaften, 167, Springer-Verlag, New York–Berlin, 1970 | MR | Zbl | MR | Zbl

[4] A. Ivič, “On the integral of Hardy's function”, Arch. Math., 83:1 (2004), 41–47 | DOI | MR | Zbl

[5] A. A. Karatsuba, M. A. Korolev, “Teorema o priblizhenii trigonometricheskoi summy bolee korotkoi”, Izv. RAN. Ser. matem., 71:2 (2007), 123–150 | MR

[6] K. L. Siegel, “Über Riemanns Nachlass zur analytishen Zachlentheorie”, Quellen und Studien zur Geschichte, 2, Studien, 1932, 45–80 | Zbl

[7] S. A. Gritsenko, “Ob otsenkakh trigonometricheskikh summ po tretei proizvodnoi”, Matem. zametki, 60:3 (1996), 383–389 | MR | Zbl

[8] J. M. Borwein, D. M. Bradley, R. E. Crandall, “Computational strategies for the Riemann zeta function”, Numerical analysis in the 20th century, Vol. I, Approximation theory, J. Comput. Appl. Math., 121:1–2 (2000), 247–296 | DOI | MR | Zbl

[9] W. Gabcke, “Neue Herleitung und explizite Restabschäetzung der Riemann–Siegel–Formel”, Thesis Georg-August Universität zur Göttingen, 1979 | Zbl

[10] E. K. Titchmarsh, Teoriya dzeta-funktsii Rimana, IL, M., 1953; E. C. Titchmarsh, The theory of the Riemann Zeta-function, Clarendon Press, Oxford, 1951 | MR | Zbl