On the integral of Hardy's function $Z(t)$
Izvestiya. Mathematics , Tome 72 (2008) no. 3, pp. 429-478

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove asymptotic formulae for the values of the integral of Hardy's function $Z(t)$ at special points and obtain an omega-theorem and an upper bound for the integral of $Z(t)$ that are sharp with respect to the rate of growth.
@article{IM2_2008_72_3_a1,
     author = {M. A. Korolev},
     title = {On the integral of {Hardy's} function $Z(t)$},
     journal = {Izvestiya. Mathematics },
     pages = {429--478},
     publisher = {mathdoc},
     volume = {72},
     number = {3},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2008_72_3_a1/}
}
TY  - JOUR
AU  - M. A. Korolev
TI  - On the integral of Hardy's function $Z(t)$
JO  - Izvestiya. Mathematics 
PY  - 2008
SP  - 429
EP  - 478
VL  - 72
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2008_72_3_a1/
LA  - en
ID  - IM2_2008_72_3_a1
ER  - 
%0 Journal Article
%A M. A. Korolev
%T On the integral of Hardy's function $Z(t)$
%J Izvestiya. Mathematics 
%D 2008
%P 429-478
%V 72
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2008_72_3_a1/
%G en
%F IM2_2008_72_3_a1
M. A. Korolev. On the integral of Hardy's function $Z(t)$. Izvestiya. Mathematics , Tome 72 (2008) no. 3, pp. 429-478. http://geodesic.mathdoc.fr/item/IM2_2008_72_3_a1/