@article{IM2_2008_72_3_a0,
author = {V. K. Beloshapka and V. V. Ezhov and G. Schmalz},
title = {Holomorphic classification of four-dimensional surfaces in~$\mathbb C^3$},
journal = {Izvestiya. Mathematics},
pages = {413--427},
year = {2008},
volume = {72},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2008_72_3_a0/}
}
TY - JOUR AU - V. K. Beloshapka AU - V. V. Ezhov AU - G. Schmalz TI - Holomorphic classification of four-dimensional surfaces in $\mathbb C^3$ JO - Izvestiya. Mathematics PY - 2008 SP - 413 EP - 427 VL - 72 IS - 3 UR - http://geodesic.mathdoc.fr/item/IM2_2008_72_3_a0/ LA - en ID - IM2_2008_72_3_a0 ER -
V. K. Beloshapka; V. V. Ezhov; G. Schmalz. Holomorphic classification of four-dimensional surfaces in $\mathbb C^3$. Izvestiya. Mathematics, Tome 72 (2008) no. 3, pp. 413-427. http://geodesic.mathdoc.fr/item/IM2_2008_72_3_a0/
[1] V. K. Beloshapka, “$\mathrm{CR}$-varieties of the type $(1,2)$ as varieties of “super-high” codimension”, Russian J. Math. Phys., 5:3 (1997), 399–404 | MR | Zbl
[2] V. K. Beloshapka, “Universalnaya model veschestvennogo podmnogoobraziya”, Matem. zametki, 75:4 (2004), 507–522 | MR | Zbl
[3] B. V. Shabat, Vvedenie v kompleksnyi analiz, ch. II, Nauka, M., 1985 ; B. V. Shabat, Introduction to complex analysis. Part II: Functions of several variables, Translations of Mathematical Monographs, 110, Amer. Math. Soc., Providence, RI, 1992 | MR | Zbl | MR | Zbl
[4] S. S. Chern, J. K. Moser, “Real hypersurfaces in complex manifold”, Acta Math., 133:1 (1974), 219–271 | DOI | MR
[5] I. G. Petrovskii, Lektsii ob uravneniyakh s chastnymi proizvodnymi, 3-e izd., GIFML, M., 1961 | MR
[6] Hon-Fei Lai, “Characteristic classes of real manifolds immersed in complex manifolds”, Trans. Amer. Math. Soc., 172 (1972), 1–33 | DOI | MR | Zbl
[7] A. V. Domrin, “Opisanie v terminakh RC-osobennostei kharakteristicheskikh klassov veschestvennykh podmnogoobrazii v kompleksnykh mnogoobraziyakh”, Izv. RAN. Ser. matem., 59:5 (1995), 19–40 | MR | Zbl