Regularity and Tresse's theorem for geometric structures
Izvestiya. Mathematics , Tome 72 (2008) no. 2, pp. 345-382

Voir la notice de l'article provenant de la source Math-Net.Ru

For any non-special bundle $P\to X$ of geometric structures we prove that the $k$-jet space $J^k$ of this bundle with an appropriate $k$ contains an open dense domain $U_k$ on which Tresse's theorem holds. For every $s\geqslant k$ we prove that the pre-image $\pi^{-1}(k,s)(U_k)$ of $U_k$ under the natural projection $\pi(k,s)\colon J^s\to J^k$ consists of regular points. (A point of $J^s$ is said to be regular if the orbits of the group of diffeomorphisms induced from $X$ have locally constant dimension in a neighbourhood of this point.)
@article{IM2_2008_72_2_a6,
     author = {R. A. Sarkisyan and I. G. Shandra},
     title = {Regularity and {Tresse's} theorem for geometric structures},
     journal = {Izvestiya. Mathematics },
     pages = {345--382},
     publisher = {mathdoc},
     volume = {72},
     number = {2},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2008_72_2_a6/}
}
TY  - JOUR
AU  - R. A. Sarkisyan
AU  - I. G. Shandra
TI  - Regularity and Tresse's theorem for geometric structures
JO  - Izvestiya. Mathematics 
PY  - 2008
SP  - 345
EP  - 382
VL  - 72
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2008_72_2_a6/
LA  - en
ID  - IM2_2008_72_2_a6
ER  - 
%0 Journal Article
%A R. A. Sarkisyan
%A I. G. Shandra
%T Regularity and Tresse's theorem for geometric structures
%J Izvestiya. Mathematics 
%D 2008
%P 345-382
%V 72
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2008_72_2_a6/
%G en
%F IM2_2008_72_2_a6
R. A. Sarkisyan; I. G. Shandra. Regularity and Tresse's theorem for geometric structures. Izvestiya. Mathematics , Tome 72 (2008) no. 2, pp. 345-382. http://geodesic.mathdoc.fr/item/IM2_2008_72_2_a6/