Regularity and Tresse's theorem for geometric structures
Izvestiya. Mathematics , Tome 72 (2008) no. 2, pp. 345-382.

Voir la notice de l'article provenant de la source Math-Net.Ru

For any non-special bundle $P\to X$ of geometric structures we prove that the $k$-jet space $J^k$ of this bundle with an appropriate $k$ contains an open dense domain $U_k$ on which Tresse's theorem holds. For every $s\geqslant k$ we prove that the pre-image $\pi^{-1}(k,s)(U_k)$ of $U_k$ under the natural projection $\pi(k,s)\colon J^s\to J^k$ consists of regular points. (A point of $J^s$ is said to be regular if the orbits of the group of diffeomorphisms induced from $X$ have locally constant dimension in a neighbourhood of this point.)
@article{IM2_2008_72_2_a6,
     author = {R. A. Sarkisyan and I. G. Shandra},
     title = {Regularity and {Tresse's} theorem for geometric structures},
     journal = {Izvestiya. Mathematics },
     pages = {345--382},
     publisher = {mathdoc},
     volume = {72},
     number = {2},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2008_72_2_a6/}
}
TY  - JOUR
AU  - R. A. Sarkisyan
AU  - I. G. Shandra
TI  - Regularity and Tresse's theorem for geometric structures
JO  - Izvestiya. Mathematics 
PY  - 2008
SP  - 345
EP  - 382
VL  - 72
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2008_72_2_a6/
LA  - en
ID  - IM2_2008_72_2_a6
ER  - 
%0 Journal Article
%A R. A. Sarkisyan
%A I. G. Shandra
%T Regularity and Tresse's theorem for geometric structures
%J Izvestiya. Mathematics 
%D 2008
%P 345-382
%V 72
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2008_72_2_a6/
%G en
%F IM2_2008_72_2_a6
R. A. Sarkisyan; I. G. Shandra. Regularity and Tresse's theorem for geometric structures. Izvestiya. Mathematics , Tome 72 (2008) no. 2, pp. 345-382. http://geodesic.mathdoc.fr/item/IM2_2008_72_2_a6/

[1] S. Lie, Gesammelte Abhandlungen, Teubner, Leipzig, 1922–1937 | MR | Zbl

[2] É. Cartan, ØE uvres complètes, Gauthier-Villars, Paris, 1952–1955 | MR | MR | MR | Zbl

[3] V. I. Arnold, “Mathematical problems in classical physics”, Trends and perspectives in applied mathematics, Appl. Math. Sci., 100, Springer, New York, 1994, 1–20 | MR | Zbl

[4] V. I.Arnold, Arnold's problems, Springer, Berlin, 2004 | MR | Zbl | Zbl

[5] Ar. Tresse, “Sur les invariants différentiels des groupes continus de transformations”, Acta Math., 18 (1894), 1–88 | DOI | MR | Zbl

[6] L. V. Ovsyannikov, Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 | MR | Zbl

[7] A. Kumpera, “Invariants différentiels d'un pseudogroupe de Lie. I”, J. Differential Geometry, 10 (1975), 289–345 | MR | Zbl

[8] J. Muñoz, F. J. Muriel, J. Rodríguez, “On the finitness of differential invariants”, J. Math. Anal. Appl., 284:1 (2003), 266–282 | DOI | MR | Zbl

[9] B. Kruglikov, V. Lychagin, “Invariants of pseudogroup actions: homological methods and finiteness theorem”, Int. J. Geom. Methods Mod. Phys., 3:5–6 (2006), 1131–1165 | DOI | MR | Zbl

[10] R. L. Bryant, S. S. Chern, R. B. Gardner, H. L. Goldschmidt, P. A. Griffiths, Exterior differential systems, Math. Sci. Res. Inst. Publ., 18, Springer-Verlag, New York, 1991 | MR | Zbl

[11] Ph. A. Griffiths, Exterior differential systems and the calculus of variations, Progr. Math., 25, Boston, MA, Birkhäuser, 1983 | MR | MR | Zbl

[12] V. Guillemin, D. Quillen, S. Sternberg, “The classification of the irreducible complex algebras of infinite types”, J. Analyse Math., 18 (1967), 107–112 ; Matematika. Sb. per., 12:6 (1968), 63–66 | DOI | MR | Zbl

[13] I. M. Singer, S. Sternberg, “The infinite groups of Lie and Cartan. I. The transitive groups.”, J. Analyse Math., 15 (1965), 1–114 | DOI | MR | Zbl

[14] Z. F. Pommaret, Systems of partial differential equations and Lie pseudogroups, Math. Appl., 14, Gordon Breach, New York, 1978 | MR | MR | Zbl | Zbl

[15] P. J. Olver, J. Pohjanpelto, “Maurer–Cartan forms and the structure of Lie pseudo-groups”, Selecta Math., 11:1 (2005), 99–126 | DOI | MR | Zbl

[16] I. Zelenko, “On variational approach to differential invariants of rank two distributions”, Differential Geom. Appl., 24:3 (2006), 235–259 | DOI | MR | Zbl

[17] A. Agrachev, “Methods of control theory in nonholonomic geometry”, Proceedings of the International Congress of Mathematicians, vols. 1, 2 (Zürich, 1994), Birkhäuser, Basel, 1995, 1473–1483 | MR | Zbl

[18] É. Cartan, “Les systémes de Pfaff, á cinq variables et les équations aux dérivés partielles du second ordre”, Ann. Sci. École Norm. Sup., 27:3 (1910), 109–192 | MR | Zbl

[19] A. Agrachev, I. Zelenko, “Geometry of Jacobi curves. I, II”, J. Dynam. Control Systems, 8:1 (2002), 93–140 | DOI | MR | Zbl

[20] B. Doubrov, I. Zelenko, “A canonical frame for nonholonomic rank two distributions of maximal class”, C. R. Math. Acad. Sci. Paris, 342:8 (2006), 589–594 | MR | Zbl

[21] A. A. Agrachev, “Rolling balls and octonions”, Proc. Steklov Inst. Math., 258:1 (2007), 13–22 | DOI

[22] A. S. Shmelev, “Some properties of symplectic and hyper-Kählerian structures”, Russ. Acad. Sci. Dokl. Math., 49:3 (1994), 511–514 | MR | Zbl

[23] A. S. Shmelev, “On differential invariants of some differential–geometric structures”, Proc. Steklov Inst. Math., 209 (1995), 203–234 | MR | Zbl

[24] A. S. Shmelev, “Functional moduli of jets of Riemannian metrics”, Funct. Anal. Appl., 31:2 (1997), 119–125 | DOI | MR | Zbl

[25] T. Y. Thomas, The differential invariants of generalized spaces, Cambridge Univ. Press, Cambridge, 1934 | Zbl

[26] D. B. A. Epstein, “Natural tensors on Riemannian manifolds”, J. Differential Geometry, 10:4 (1975), 631–645 | MR | Zbl

[27] P. I. Katsylo, “On curvatures of sections of tensor bundles”, Amer. Math. Soc. Transl. Ser. 2, 213 (2005), 129–140 | MR | Zbl

[28] R. A. Sarkisyan, “On differential invariants of geometric structures”, Izv. Math., 70:2 (2006), 307–362 | DOI | MR | Zbl

[29] M. Golubitsky, V. Guillemin, Stable mappings and their singularities, Grad. Texts in Math., 14, Springer-Verlag, New York–Heidelberg, 1973 | MR | MR | Zbl

[30] N. H. Ibragimov, Transformation groups applied to mathematical physics, Math. Appl., D. Reidel, Dordrecht, 1985 | MR | MR | Zbl | Zbl

[31] D. Bayer, D. Mumford, What can be computed in algebraic Geometry?, ; D. Bayer, D. Mumford, Computational algebraic geometry and commutative algebra, Cambridge Univ. Press, Cambridge, 1993, 1–48 arXiv: alg-geom/9304003 | MR | Zbl

[32] D. Cox, J. Little, D. O'Shea, Ideals, varieties, and algorithms, An introduction to computational algebraic geometry and commutative algebra, Undergrad. Texts Math., Springer-Verlag, New York, 1997 | MR | Zbl

[33] D. Eisenbud, Commutative algebra. With a view toward algebraic geometry, Grad. Texts in Math., 150, Springer-Verlag, New York, 1995 | MR | Zbl

[34] A. G. Khovanskii, S. P. Chulkov, Geometriya polugruppy $\mathbb Z_{\leqslant0}^n$, Izd-vo MTsNMO, M., 2006

[35] V. N. Latyshev, “A combinatorial complexity of Gröbner bases”, J. Math. Sci., 102:3 (2000), 4134–4138, New York | DOI | MR | Zbl

[36] I. V. Arzhantsev, Bazisy Grëbnera i sistemy algebraicheskikh uravnenii, Izd-vo MTsNMO, M., 2003

[37] W. W. Adams, P. Loustaunau, An introduction to Gröbner bases, Amer. Math. Soc., Providence, RI, 1994 | MR | Zbl

[38] M. Kuranishi, Lectures on involutive systems of partial differential equations, Publ. Soc. Mat., Publicacoes da Sociedade de Matematica de Sao Paulo, Sao Paulo, 1967 | Zbl