On the group of substitutions of formal power series with integer coefficients
Izvestiya. Mathematics , Tome 72 (2008) no. 2, pp. 241-264.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study certain properties of the group $\mathcal J(\mathbb Z)$ of substitutions of formal power series in one variable with integer coefficients. We show that $\mathcal J(\mathbb Z)$, regarded as a topological group, has four generators and cannot be generated by fewer elements. In particular, we show that the one-dimensional continuous homology of $\mathcal J(\mathbb Z)$ is isomorphic to $\mathbb Z\oplus\mathbb Z\oplus\mathbb Z_2\oplus\mathbb Z_2$. We study various topological and geometric properties of the coset space $\mathcal J(\mathbb R)/\mathcal J(\mathbb Z)$. We compute the real cohomology $\widetilde{H}^*\bigl(\mathcal J(\mathbb Z); \mathbb R\bigr)$ with uniformly locally constant supports and show that it is naturally isomorphic to the cohomology of the nilpotent part of the Lie algebra of formal vector fields on the line.
@article{IM2_2008_72_2_a1,
     author = {I. K. Babenko and S. A. Bogatyi},
     title = {On the group of substitutions of formal power series with integer coefficients},
     journal = {Izvestiya. Mathematics },
     pages = {241--264},
     publisher = {mathdoc},
     volume = {72},
     number = {2},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2008_72_2_a1/}
}
TY  - JOUR
AU  - I. K. Babenko
AU  - S. A. Bogatyi
TI  - On the group of substitutions of formal power series with integer coefficients
JO  - Izvestiya. Mathematics 
PY  - 2008
SP  - 241
EP  - 264
VL  - 72
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2008_72_2_a1/
LA  - en
ID  - IM2_2008_72_2_a1
ER  - 
%0 Journal Article
%A I. K. Babenko
%A S. A. Bogatyi
%T On the group of substitutions of formal power series with integer coefficients
%J Izvestiya. Mathematics 
%D 2008
%P 241-264
%V 72
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2008_72_2_a1/
%G en
%F IM2_2008_72_2_a1
I. K. Babenko; S. A. Bogatyi. On the group of substitutions of formal power series with integer coefficients. Izvestiya. Mathematics , Tome 72 (2008) no. 2, pp. 241-264. http://geodesic.mathdoc.fr/item/IM2_2008_72_2_a1/

[1] S. A. Jennings, “Substitution groups of formal power series”, Canadian J. Math., 6 (1954), 325–340 | MR | Zbl

[2] M. Gotô, “On the group of formal analytic transformations”, Kōdai Math. Sem. Rep., 1950, no. 3, 45–46 | DOI | MR | Zbl

[3] V. M. Bukhshtaber, A. V. Shokurov, “The Landweber–Novikov algebra and formal vector fields on the line”, Funkt. Anal. Appl., 12:3 (1978), 159–168 | DOI | MR | Zbl

[4] R. Camina, “The Nottingham group”, New horizons in pro-$p$ groups, Progr. Math., 184, eds. M. P. F. du Sautoy, D. Segal, and A. Shalev, Birkhäuser, Boston, MA, 2000, 205–221 | MR | Zbl

[5] C. R. Leedham-Green, S. McKay, The structure of groups of prime power order, London Mathematical Society Monographs. New Series, 27, Oxford University Press, Oxford, 2002 | MR | Zbl

[6] I. Fesenko, “On just infinite pro-$p$-groups and arithmetically profinite extensions of local fields”, J. Reine Angew. Math., 517 (1999), 61–80 | DOI | MR | Zbl

[7] L. S. Pontryagin, Topological groups, Gordon and Breach, New York–London–Paris, 1966 | MR | MR | Zbl

[8] G. Bredon, Vvedenie v teoriyu kompaktnykh grupp preobrazovanii, Nauka, M., 1980 ; G. E. Bredon, Introduction to compact transformation groups, Pure and Applied Mathematics, 46, Academic Press, New York–London, 1972 | MR | Zbl | MR | Zbl

[9] D. L. Johnson, “The group of formal power series under substitution”, J. Austral. Math. Soc. Ser. A, 45:3 (1988), 296–302 | DOI | MR | Zbl

[10] B. Szegedy, “Almost all finitely generated subgroups of the Nottingham group are free”, Bull. London Math. Soc., 37:1 (2005), 75–79 | DOI | MR | Zbl

[11] B. Ya. Levin, Raspredelenie kornei tselykh funktsii, GITTL, M., 1956 | MR | Zbl

[12] E. Spener, Algebraicheskaya topologiya, Mir, M., 1971 ; E. Spanier, Algebraic topology, McGraw-Hill Book, New York–Toronto, 1966 | MR | Zbl | MR | Zbl

[13] K. Nomizu, “On the cohomology of compact homogeneous spaces of nilpotent Lie groups”, Ann. of Math. (2), 59:3 (1954), 531–538 | DOI | MR | Zbl

[14] L. V. Goncharova, “The cohomologies of Lie algebras of formal vector fields on the line”, Funkt. Anal. Appl., 7:2 (1973), 91–97 | DOI | MR | Zbl

[15] B. Klopsch, “Normal subgroups in substitution groups of formal power series”, J. Algebra, 228:1 (2000), 91–106 | DOI | MR | Zbl

[16] J. Milnor, “Remarks on infinite-dimensional Lie groups”, Relativity, groups and topology, II (Les Houches, 1983), eds. B. S. de Witt, R. Stora, North-Holland, Amsterdam, 1984, 1007–1057 | MR | Zbl

[17] A. I. Mal'tsev, “On a class of homogeneous spaces”, Am. Math. Soc. Transl., 39 (1951) | Zbl

[18] P. S. Alexandrov, P. S. Urysohn, “Über nulldimensionale Punktmengen”, Ann. Math., 98 (1928), 89–106 | DOI | MR

[19] R. Engelking, Obschaya topologiya, Mir, M., 1986 ; R. Engelking, General topology, Monografie Matematyczne, 60, Polish Scientific Publishers, Warsaw, 1977 | MR | MR | Zbl

[20] S. Eilenberg, N. Steenrod, Foundations of algebraic topology, Princeton Math. Ser., 15, Princeton University Press, Princeton, NJ, 1952 | MR | Zbl

[21] K. R. Parthasarathy, Probability measures on metric spaces, Probability and Mathematical Statistics, No 3, Acad. Press, New York–London, 1967 | MR | Zbl

[22] Sze-tsen Hu, “Cohomology theory in topological groups”, Michigan Math. J., 1:1 (1952), 11–59 | DOI | MR | Zbl

[23] Zh.-P. Serr, Kogomologii Galua, Mir, M., 1968 ; J.-P. Serre, Cohomologie galoisienne, Troisième édition, Lecture Notes in Math., 5, Springer-Verlag, Berlin–New York, 1965 | MR | Zbl | MR | Zbl

[24] H. Hopf, “Über die Bettischen Gruppen, die zu einer beliebigen Gruppe gehören”, Comment. Math. Helv., 17:1 (1944), 39–79 | DOI | MR | Zbl

[25] B. Eckmann, “Der Cohomologie-Ring einer beliebigen Gruppe”, Comment. Math. Helv., 18:1 (1945), 232–282 | DOI | MR

[26] S. Eilenberg, “Topological methods in abstract algebra. Cohomology theory of groups”, Bull. Amer. Math. Soc., 55 (1949), 3–37 | DOI | MR | Zbl

[27] D. B. Fuks, Cohomology of infinite-dimensional Lie algebras, Contemporary Soviet Mathematics, Consultants Bureau, New York, 1986 | MR | MR | Zbl | Zbl

[28] H. H. Schaefer, Topological vector spaces, The Macmillan, New York; Collier-Macmillan, London, 1966 | MR | Zbl

[29] V. M. Bukhshtaber, A. N. Kholodov, “Groups of formal diffeomorphisms of the superline, generating functions for sequences of polynomials, and functional equations”, Math. USSR-Izv., 35:2 (1990), 277–305 | DOI | MR | Zbl

[30] V. M. Bukhshtaber, “Groups of polynomial transformations of a line, non-formal symplectic manifolds, and the Landweber–Novikov algebra”, Russian Math. Surveys, 54:4 (1999), 837–838 | DOI | MR | Zbl

[31] V. M. Buchstaber, A. Lazarev, “The Gelfand transform in commutative algebra”, Mosc. Math. J., 5:2 (2005), 311–327 | MR | Zbl