Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2008_72_1_a8, author = {A. I. Shtern}, title = {A version of van der {Waerden's} theorem and a proof of {Mishchenko's}}, journal = {Izvestiya. Mathematics }, pages = {169--205}, publisher = {mathdoc}, volume = {72}, number = {1}, year = {2008}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2008_72_1_a8/} }
A. I. Shtern. A version of van der Waerden's theorem and a proof of Mishchenko's. Izvestiya. Mathematics , Tome 72 (2008) no. 1, pp. 169-205. http://geodesic.mathdoc.fr/item/IM2_2008_72_1_a8/
[1] B. L. van der Waerden, “Stetigkeitssätze für halbeinfache Liesche Gruppen”, Math. Z., 36:1 (1933), 780–786 | DOI | MR | Zbl
[2] L. W. Anderson, R. P. Hunter, “On the continuity of certain homomorphisms of compact semigroups”, Duke Math. J., 38:2 (1971), 409–414 | DOI | MR | Zbl
[3] E. Khyuitt, K. Ross, Abstraktnyi garmonicheskii analiz. T. II. Struktura i analiz kompaktnykh grupp. Analiz na lokalno kompaktnykh abelevykh gruppakh, Nauka, M., 1975 ; E. Hewitt, K. A. Ross, Abstract harmonic analysis. V. II: Structure and analysis for compact groups. Analysis on locally compact Abelian groups, Grundlehren Math. Wiss., 152, Springer-Verlag, New York–Berlin, 1970 | MR | MR | Zbl
[4] J. E. Hart, K. Kunen, “Bohr compactifications of discrete structures”, Fund. Math., 160:2 (1999), 101–151 | MR | Zbl
[5] J. E. Hart, K. Kunen, “Bohr compactifications of non-abelian groups”, Topology Proc., 26:2 (2001–2002), 593–626 | MR | Zbl
[6] J. E. Hart, K. Kunen, “Bohr topologies and compact function spaces”, Topology Appl., 125:2 (2002), 183–198 | DOI | MR | Zbl
[7] G. Lukács, Lifted closure operators, arXiv: math/0502410
[8] W. W. Comfort, D. Remus, H. Szambien, “Extending ring topologies”, J. Algebra, 232:1 (2000), 21–47 | DOI | MR | Zbl
[9] J. D. Lawson, “Intrinsic topologies in topological lattices and semilattices”, Pacific J. Math., 44 (1973), 593–602 | MR | Zbl
[10] A. Pillay, “An application of model theory to real and $p$-adic algebraic groups”, J. Algebra, 126:1 (1989), 139–146 | DOI | MR | Zbl
[11] K. H. Hofmann, S. A. Morris, The structure of compact groups. A primer for the student—a handbook for the expert, de Gruyter Stud. Math., 25, de Gruyter, Berlin, 1998 | MR | Zbl
[12] W. W. Comfort, “Topological groups”, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, 1143–1263 | MR | Zbl
[13] W. W. Comfort, L. C. Robertson, “Images and quotients of $\operatorname{SO}(3,R)$: remarks on a theorem of Van der Waerden”, Rocky Mountain J. Math., 17:1 (1987), 1–13 | MR | Zbl
[14] K. de Leeuw, I. Glicksberg, “The decomposition of certain group representations”, J. Analyse Math., 15 (1965), 135–192 | DOI | MR | Zbl
[15] R. T. Moore, Measurable, continuous and smooth vectors for semi-groups and group representations, Mem. Amer. Math. Soc., no. 78, Amer. Math. Soc., Providence, RI, 1968 | MR | Zbl
[16] L. G. Brown, “Continuity of actions of groups and semigroups on Banach spaces”, J. London Math. Soc. (2), 62:1 (2000), 107–116 | DOI | MR | Zbl
[17] A. I. Shtern, “Criteria for weak and strong continuity of representations of topological groups in Banach spaces”, Sb. Math., 193:9 (2002), 1381–1396 | DOI | MR | Zbl
[18] A. I. Shtern, “Continuity of Banach representations in terms of point variations”, Russ. J. Math. Phys., 9:2 (2002), 250–252 | MR | Zbl
[19] A. I. Shtern, “Representations of topological groups in locally convex spaces: continuity properties and weak almost periodicity”, Russ. J. Math. Phys., 11:1 (2004), 81–108 | MR | Zbl
[20] A. I. Shtern, “Continuity criteria for finite-dimensional representations of compact connected groups”, Adv. Stud. Contemp. Math. (Kyungshang), 6:2 (2003), 141–156 | MR | Zbl
[21] A. I. Shtern, “Kriterii nepreryvnosti konechnomernykh predstavlenii grupp”, Funktsionalnye prostranstva. Differentsialnye operatory. Problemy matematicheskogo obrazovaniya, Nauka, M., 2003, 122–124
[22] A. I. Shtern, “Continuity conditions for finite-dimensional representations of some compact totally disconnected groups”, Adv. Stud. Contemp. Math. (Kyungshang), 8:1 (2004), 13–22 | MR | Zbl
[23] A. I. Shtern, “Criteria for the continuity of finite-dimensional representations of connected locally compact groups”, Sb. Math., 195:9 (2004), 1377–1391 | DOI | MR | Zbl
[24] A. I. Shtern, “Continuity criterion for finite-dimensional representations of locally compact groups”, Math. Notes, 75:5–6 (2004), 890–892 | DOI | MR | Zbl
[25] A. I. Shtern, “Weak and strong continuity of representations of topologically pseudocomplete groups in locally convex spaces”, Sb. Math., 197:3 (2006), 453–473 | DOI | MR
[26] J.-P. Serre, “Exemples de variétés projectives conjuguées non homéomorphes”, C. R. Acad. Sci. Paris, 258 (1964), 4194–4196 | MR | Zbl
[27] H. A. Keller, “On valued, complete fields and their automorphisms”, Pacific J. Math., 121:2 (1986), 397–406 | MR | Zbl
[28] J. Tits, “Sur le groupe des automorphismes d'un arbre”, Essays on topology and related topics, Mémoires dédiés á Georges de Rham, Springer, New York, 1970, 188–211 | MR | Zbl
[29] J. Tits, “Homomorphismes et automorphismes “abstraits” de groupes algébriques et arithmétiques”, Actes du Congrès International des Mathématiciens (Nice, 1970), vol. 2, Gauthier-Villars, Paris, 1971, 349–355 | MR | Zbl
[30] S. A. Adeleke, “Discontinuous automorphisms of the proper Galilei and Euclidean groups”, Internat. J. Theoret. Phys., 28:4 (1989), 469–479 | DOI | MR | Zbl
[31] M. Kuczma, An introduction to the theory of functional equations and inequalities, Paǹstwowe Wydawnictwo Naukowe, Warsaw, 1985 | MR | Zbl
[32] D. Kazhdan, “On $\varepsilon$-representations”, Israel J. Math., 43:4 (1982), 315–323 | DOI | MR | Zbl
[33] A. I. Shtern, “Kazhdan–Milman problem for semisimple compact Lie groups”, Russian Math. Surveys, 62:1 (2007), 113–174 | DOI | MR
[34] K. Grove, H. Karcher, E. A. Ruh, “Jacobi fields and Finsler metrics on compact Lie groups with an application to differential pinching problems”, Math. Ann., 211:1 (1974), 7–21 | DOI | MR | Zbl
[35] A. I. Shtern, “Roughness and approximation of quasi-representations of amenable groups”, Math. Notes, 65:6 (1999), 760–769 | DOI | MR | Zbl
[36] A. I. Shtern, “Van der Waerden continuity theorem for semisimple Lie groups”, Russ. J. Math. Phys., 13:2 (2006), 210–223 | DOI | MR | Zbl
[37] A. I. Shtern, “Van der Waerden continuity theorem for the Poincaré group and for some other group extensions”, Adv. Theor. Appl. Math., 1:1 (2006), 79–90 | MR
[38] A. I. Shtern, “Van der Waerden's continuity theorem for the commutator subgroups of connected Lie groups and Mishchenko's conjecture”, Adv. Stud. Contemp. Math. (Kyungshang), 13:2 (2006), 143–158 | MR | Zbl
[39] M. A. Naimark, A. I. Štern [Shtern], Theory of group representations, Grundlehren Math. Wiss., 246, Springer-Verlag, New York, 1982 | MR | Zbl
[40] V. S. Varadarajan, Lie groups, Lie algebras, and their representations, Prentice-Hall, Englewood Cliffs, NJ, 1974 | MR | Zbl
[41] Kh. Shefer, Topologicheskie vektornye prostranstva, Mir, M., 1971 ; H. Schaefer, Topological vector spaces, The Macmillan Co., New York; Collier–Macmillan Ltd., London, 1966 | MR | Zbl | MR | Zbl
[42] A. L. T. Paterson, Amenability, Math. Surveys Monogr., 29, Amer. Math. Soc., Providence, RI, 1988 | MR | Zbl
[43] M. Stroppel, “Lie theory for non-Lie groups”, J. Lie Theory, 4:2 (1994), 257–284 | MR | Zbl
[44] D. Montgomery, L. Zippin, Topological transformation groups, Interscience Publishers, New York–London, 1955 | MR | Zbl
[45] E. Breuillard, T. Gelander, “On dense free subgroups of Lie groups”, J. Algebra, 261:2 (2003), 448–467 | DOI | MR | Zbl
[46] R. W. Bagley, T. S. Wu, J. S. Yang, “Pro-Lie groups”, Trans. Amer. Math. Soc., 287:2 (1985), 829–838 | DOI | MR | Zbl
[47] M. Rajagopalan, “Characters of locally compact abelian groups”, Math. Z., 86:4 (1964), 268–272 | DOI | MR | Zbl
[48] H. Rindler, “Unitary representations and compact groups”, Arch. Math. (Basel), 58:5 (1992), 492–499 | MR | Zbl
[49] A. I. Shtern, “Quasirepresentations and pseudorepresentations”, Funct. Anal. Appl., 25:2 (1991), 140–143 | DOI | MR | Zbl
[50] A. I. Shtern, “Quasisymmetry. I”, Russian J. Math. Phys., 2:3 (1994), 353–382 | MR | Zbl
[51] A. I. Shtern, Ustoichivost predstavlenii i psevdokharaktery, Lomonosovskie chteniya, MGU, M., 1983
[52] A. I. Shtern, “Remarks on pseudocharacters and the real continuous bounded cohomology of connected locally compact groups”, Ann. Global Anal. Geom., 20:3 (2001), 199–221 | DOI | MR | Zbl
[53] A. I. Shtern, “Bounded continuous real 2-cocycles on simply connected simple Lie groups and their applications”, Russ. J. Math. Phys., 8:1 (2001), 122–133 | MR | Zbl
[54] A. I. Shtern, “Structure properties and real continuous bounded 2-cohomology of locally compact groups”, Funct. Anal. Appl., 35:4 (2001), 294–304 | DOI | MR | Zbl
[55] A. I. Shtern, “A criterion for the second real continuous bounded cohomology of a locally compact group to be finite-dimensional”, Acta Appl. Math., 68:1–3 (2001), 105–121 | DOI | MR | Zbl
[56] A. I. Shtern, “Automatic continuity of pseudocharacters on Hermitian symmetric semisimple Lie groups and some applications”, Adv. Stud. Contemp. Math. (Kyungshang), 12:1 (2006), 1–8 | MR | Zbl
[57] A. I. Shtern, “Automatic continuity of pseudocharacters on semisimple Lie groups”, Math. Notes, 80:3–4 (2006), 435–441 | DOI | MR | Zbl
[58] A. I. Shtern, “Continuity conditions for finite-dimensional representations of some locally bounded groups”, Russ. J. Math. Phys., 13:4 (2006), 438–457 | DOI | MR | Zbl