On sets of large trigonometric sums
Izvestiya. Mathematics , Tome 72 (2008) no. 1, pp. 149-168

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the existence of non-trivial solutions of the equation $r_1+r_2=r_3+r_4$, where $r_1$, $r_2$, $r_3$ and $r_4$ belong to the set $R$ of large Fourier coefficients of a certain subset $A$ of $\mathbb Z/N\mathbb Z$. This implies that $R$ has strong additive properties. We discuss generalizations and applications of the results obtained.
@article{IM2_2008_72_1_a7,
     author = {I. D. Shkredov},
     title = {On sets of large trigonometric sums},
     journal = {Izvestiya. Mathematics },
     pages = {149--168},
     publisher = {mathdoc},
     volume = {72},
     number = {1},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2008_72_1_a7/}
}
TY  - JOUR
AU  - I. D. Shkredov
TI  - On sets of large trigonometric sums
JO  - Izvestiya. Mathematics 
PY  - 2008
SP  - 149
EP  - 168
VL  - 72
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2008_72_1_a7/
LA  - en
ID  - IM2_2008_72_1_a7
ER  - 
%0 Journal Article
%A I. D. Shkredov
%T On sets of large trigonometric sums
%J Izvestiya. Mathematics 
%D 2008
%P 149-168
%V 72
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2008_72_1_a7/
%G en
%F IM2_2008_72_1_a7
I. D. Shkredov. On sets of large trigonometric sums. Izvestiya. Mathematics , Tome 72 (2008) no. 1, pp. 149-168. http://geodesic.mathdoc.fr/item/IM2_2008_72_1_a7/