On sets of large trigonometric sums
Izvestiya. Mathematics , Tome 72 (2008) no. 1, pp. 149-168.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the existence of non-trivial solutions of the equation $r_1+r_2=r_3+r_4$, where $r_1$, $r_2$, $r_3$ and $r_4$ belong to the set $R$ of large Fourier coefficients of a certain subset $A$ of $\mathbb Z/N\mathbb Z$. This implies that $R$ has strong additive properties. We discuss generalizations and applications of the results obtained.
@article{IM2_2008_72_1_a7,
     author = {I. D. Shkredov},
     title = {On sets of large trigonometric sums},
     journal = {Izvestiya. Mathematics },
     pages = {149--168},
     publisher = {mathdoc},
     volume = {72},
     number = {1},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2008_72_1_a7/}
}
TY  - JOUR
AU  - I. D. Shkredov
TI  - On sets of large trigonometric sums
JO  - Izvestiya. Mathematics 
PY  - 2008
SP  - 149
EP  - 168
VL  - 72
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2008_72_1_a7/
LA  - en
ID  - IM2_2008_72_1_a7
ER  - 
%0 Journal Article
%A I. D. Shkredov
%T On sets of large trigonometric sums
%J Izvestiya. Mathematics 
%D 2008
%P 149-168
%V 72
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2008_72_1_a7/
%G en
%F IM2_2008_72_1_a7
I. D. Shkredov. On sets of large trigonometric sums. Izvestiya. Mathematics , Tome 72 (2008) no. 1, pp. 149-168. http://geodesic.mathdoc.fr/item/IM2_2008_72_1_a7/

[1] W. T. Gowers, “Rough structure and classification”, Visions in mathematics–Towards 2000, GAFA 2000. Proceedings of a meeting (Tel Aviv, Israel, August 25–September 3, 1999), Geom. Funct. Anal., Special Volume, Part I, eds. N. Alon et al., Birkhäuser, Basel, 2000, 79–117 | MR | Zbl

[2] Mei-Chu Chang, “A polynomial bound in Freiman's theorem”, Duke Math. J., 113:3 (2002), 399–419 | DOI | MR | Zbl

[3] I. Z. Ruzsa, “Generalized arithmetical progressions and sumsets”, Acta Math. Hungar., 65:4 (1994), 379–388 | DOI | MR | Zbl

[4] Yu. Bilu, “Structure of sets with small sumset”, Structure theory of sets addition, Astérisque, 258, eds. J.-M. Deshouillers et al., Soc. Math. France, Paris, 1999, 77–108 | MR | Zbl

[5] G. A. Freiman, Foundations of a structural theory of set addition, Transl. Math. Monogr., 37, Amer. Math. Soc., Providence, RI, 1973 | MR | MR | Zbl | Zbl

[6] B. Green, “Arithmetic progressions in sumsets”, Geom. Funct. Anal., 12:3 (2002), 584–597 | DOI | MR | Zbl

[7] J. Bourgain, “On arithmetic progressions in sums of sets of integers”, A tribute of Paul Erdős, Cambridge Univ. Press, Cambridge, 1990, 105–109 | MR | Zbl

[8] G. A. Freiman, H. Halberstam, I. Z. Ruzsa, “Integer sum sets containing long arithmetic progressions”, J. London Math. Soc. II, 46:2 (1992), 193–201 | DOI | MR | Zbl

[9] B. Green, Structure theory of set addition, ICMS Instructional Conference in Combinatorial Aspects of Mathematical Analysis, Edinburgh, 2002 http://www.dpmms.cam.ac.uk/b̃jg23/papers/icmsnotes.pdf

[10] B. Green, “Some constructions in the inverse spectral theory of cyclic groups”, Combin. Probab. Comput., 12:2 (2003), 127–138 | DOI | MR | Zbl

[11] A. A. Yudin, “O mere bolshikh znachenii trigonometricheskikh summ”, Teoriya chisel, eds. G. A. Freiman, A. M. Rubinov, E. V. Novoselov, Kalininskii gos. un-t, Kalinin, 1973, 163–174 | MR | Zbl

[12] A. Besser, “Sets of integers with large trigonometric sums”, Structure theory of set addition, Astérisque, 258, eds. J.-M. Deshouillers et al., Soc. Math. France, Paris, 1999, 35–76 | MR | Zbl

[13] V. F. Lev, “Linear equations over $\mathbb F_p$ and moments of exponential sums”, Duke Math. J., 107:2 (2001), 239–263 | DOI | MR | Zbl

[14] S. V. Konyagin, V. F. Lev, “On the distribution of exponential sums”, Integers, 2000, A1 | MR | Zbl

[15] K. de Leeuw, Y. Katznelson, J.-P. Kahane, “Sur les coefficients de Fourier des fonctions continues”, C. R. Acad. Sci. Paris Sér. A, 285:16 (1977), 1001–1003 | MR | Zbl

[16] F. L. Nazarov, “The Bang solution of the coefficient problem”, St. Petersburg Math. J., 9:2 (1998), 407–419 | MR | Zbl

[17] K. Ball, “Convex geometry and functional analysis”, Handbook of the geometry of Banach spaces, vol. 1, Elsevier, Amsterdam, 2001, 161–194 | MR | Zbl

[18] W. T. Gowers, “A new proof of Szemerédi's theorem”, Geom. Funct. Anal., 11:3 (2001), 465–588 | DOI | MR | Zbl

[19] W. Rudin, Fourier analysis on groups, Wiley, New York, 1990, (Reprint of the 1962 original) | MR | Zbl

[20] W. Rudin, “Trigonometric series with gaps”, J. Math. Mech., 9 (1960), 203–227 | MR | Zbl

[21] B. Green, “Spectral structure of sets of integers”, Fourier analysis and convexity, Appl. Numer. Harmon. Anal., Birkhäuser, Boston, MA, 2004, 83–96 | MR | Zbl

[22] I. M. Vinogradov, Metod trigonometricheskikh summ v teorii chisel, Nauka, M., 1971 | MR | Zbl

[23] Yu. V. Linnik, “On Weyl's sums”, Matem. sb., 12(54):1 (1943), 28–39 (English) | MR | Zbl

[24] Yu. V. Nesterenko, “On I. M. Vinogradov's mean value theorem”, Trans. Moscow Math. Soc., 1986, 105–113 | MR | Zbl

[25] B. Bajnok, I. Ruzsa, “The independence number of a subset of an Abelian group”, Integers, 3 (2003), A02 | MR | Zbl

[26] J. Bourgain, “On triples in arithmetic progression”, Geom. Funct. Anal., 9:5 (1999), 968–984 | DOI | MR | Zbl