On sets of large trigonometric sums
Izvestiya. Mathematics , Tome 72 (2008) no. 1, pp. 149-168
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove the existence of non-trivial solutions of the equation
$r_1+r_2=r_3+r_4$, where $r_1$, $r_2$, $r_3$ and $r_4$ belong to
the set $R$ of large Fourier coefficients of a certain subset $A$
of $\mathbb Z/N\mathbb Z$. This implies that $R$ has strong
additive properties. We discuss generalizations and applications
of the results obtained.
@article{IM2_2008_72_1_a7,
author = {I. D. Shkredov},
title = {On sets of large trigonometric sums},
journal = {Izvestiya. Mathematics },
pages = {149--168},
publisher = {mathdoc},
volume = {72},
number = {1},
year = {2008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2008_72_1_a7/}
}
I. D. Shkredov. On sets of large trigonometric sums. Izvestiya. Mathematics , Tome 72 (2008) no. 1, pp. 149-168. http://geodesic.mathdoc.fr/item/IM2_2008_72_1_a7/