Symplectic geometry on an infinite-dimensional phase space and an asymptotic representation
Izvestiya. Mathematics , Tome 72 (2008) no. 1, pp. 127-148.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the relation between the mathematical structures of statistical mechanics on an infinite-dimensional phase space (denoted by $\Omega$) and quantum mechanics. It is shown that quantum averages (given by the von Neumann trace formula) can be obtained as the main term of the asymptotic expansion of Gaussian functional integrals with respect to a small parameter $\alpha$. Here $\alpha$ is the dispersion of the Gaussian measure. The symplectic structure on the infinite-dimensional phase space plays a crucial role in our considerations. In particular, the Gaussian measures that induce quantum averages must be consistent with the symplectic structure. The equations of Schrödinger, Heisenberg and von Neumann are images of the Hamiltonian dynamics on $\Omega$.
@article{IM2_2008_72_1_a6,
     author = {A. Yu. Khrennikov},
     title = {Symplectic geometry on an infinite-dimensional phase space and an asymptotic representation},
     journal = {Izvestiya. Mathematics },
     pages = {127--148},
     publisher = {mathdoc},
     volume = {72},
     number = {1},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2008_72_1_a6/}
}
TY  - JOUR
AU  - A. Yu. Khrennikov
TI  - Symplectic geometry on an infinite-dimensional phase space and an asymptotic representation
JO  - Izvestiya. Mathematics 
PY  - 2008
SP  - 127
EP  - 148
VL  - 72
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2008_72_1_a6/
LA  - en
ID  - IM2_2008_72_1_a6
ER  - 
%0 Journal Article
%A A. Yu. Khrennikov
%T Symplectic geometry on an infinite-dimensional phase space and an asymptotic representation
%J Izvestiya. Mathematics 
%D 2008
%P 127-148
%V 72
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2008_72_1_a6/
%G en
%F IM2_2008_72_1_a6
A. Yu. Khrennikov. Symplectic geometry on an infinite-dimensional phase space and an asymptotic representation. Izvestiya. Mathematics , Tome 72 (2008) no. 1, pp. 127-148. http://geodesic.mathdoc.fr/item/IM2_2008_72_1_a6/

[1] A. Khrennikov, “A pre-quantum classical statistical model with infinite-dimensional phase space”, J. Phys. A, 38:41 (2005), 9051–9073 | DOI | MR | Zbl

[2] J. von Neumann, Mathematical foundations of quantum mechanics, 12th printing, Princeton Landmarks Math., Princeton Univ. Press, Princeton, NJ, 1996 | MR | MR | Zbl | Zbl

[3] A. Khrennikov, “Generalizations of quantum mechanics induced by classical statistical field theory”, Found. Phys. Lett., 18:7 (2005), 637–650, Springer, Netherlands | DOI | MR | Zbl

[4] A. Khrennikov, “Nonlinear Schrödinger equations from prequantum classical statistical field theory”, Phys. Lett. A, 357:3 (2006), 171–176 | DOI | MR

[5] S. Albeverio, A. Khrennikov, O. Smolaynov, “A local Liouville theorem for infinite-dimensional Hamilton–Dirac systems”, Russian J. Math. Phys., 9:2 (2002), 123–139 | MR | Zbl

[6] A. Yu. Khrennikov, Uravneniya s beskonechnomernymi psevdodifferentsialnymi operatorami, Dis. ... kand. fiz.-matem. nauk, MGU, M., 1983

[7] A. Yu. Khrennikov, “The infinite-dimensional Liouville equation”, Russian Acad. Sci. Sb. Math., 75:1 (1993), 17–41 | DOI | MR | Zbl

[8] A. Yu. Khrennikov, “The correspondence principle in quantum field theory and relativistic boson string theory”, Math. USSR-Sb., 67:1 (1990), 209–233 | DOI | MR

[9] A. Yu. Khrennikov, “Infinite-dimensional pseudodifferential operators”, Math. USSR-Izv., 31:3 (1988), 575–601 | DOI | MR | Zbl

[10] A. Yu. Khrennikov, H. Petersson, “A Paley–Wiener theorem for generalized entire functions on infinite-dimensional spaces”, Izv. Math., 65:2 (2001), 403–424 | DOI | MR | Zbl