On the connected components of moduli of real polarized K3-surfaces
Izvestiya. Mathematics , Tome 72 (2008) no. 1, pp. 91-111

Voir la notice de l'article provenant de la source Math-Net.Ru

We complete the investigations in [11] on the classification of connected components of moduli of real polarized K3-surfaces. In particular, we show that this classification is closely related to some classical problems in number theory: the classification of binary indefinite lattices and the representation of integers as sums of two squares. As an application, we use recent results in [13] to completely classify real polarized K3-surfaces that are deformations of real hyperelliptically polarized K3-surfaces. This is important because real hyperelliptically polarized K3-surfaces can be constructed explicitly.
Keywords: deformation, real $K3$ surface, connected component, hyperelliptic curve, linear system, real rational surface, ellipsoid, hyperboloid, polarization.
Mots-clés : moduli
@article{IM2_2008_72_1_a4,
     author = {V. V. Nikulin},
     title = {On the connected components of moduli of real polarized {K3-surfaces}},
     journal = {Izvestiya. Mathematics },
     pages = {91--111},
     publisher = {mathdoc},
     volume = {72},
     number = {1},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2008_72_1_a4/}
}
TY  - JOUR
AU  - V. V. Nikulin
TI  - On the connected components of moduli of real polarized K3-surfaces
JO  - Izvestiya. Mathematics 
PY  - 2008
SP  - 91
EP  - 111
VL  - 72
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2008_72_1_a4/
LA  - en
ID  - IM2_2008_72_1_a4
ER  - 
%0 Journal Article
%A V. V. Nikulin
%T On the connected components of moduli of real polarized K3-surfaces
%J Izvestiya. Mathematics 
%D 2008
%P 91-111
%V 72
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2008_72_1_a4/
%G en
%F IM2_2008_72_1_a4
V. V. Nikulin. On the connected components of moduli of real polarized K3-surfaces. Izvestiya. Mathematics , Tome 72 (2008) no. 1, pp. 91-111. http://geodesic.mathdoc.fr/item/IM2_2008_72_1_a4/