On the connected components of moduli of real polarized K3-surfaces
Izvestiya. Mathematics , Tome 72 (2008) no. 1, pp. 91-111.

Voir la notice de l'article provenant de la source Math-Net.Ru

We complete the investigations in [11] on the classification of connected components of moduli of real polarized K3-surfaces. In particular, we show that this classification is closely related to some classical problems in number theory: the classification of binary indefinite lattices and the representation of integers as sums of two squares. As an application, we use recent results in [13] to completely classify real polarized K3-surfaces that are deformations of real hyperelliptically polarized K3-surfaces. This is important because real hyperelliptically polarized K3-surfaces can be constructed explicitly.
Keywords: deformation, real $K3$ surface, connected component, hyperelliptic curve, linear system, real rational surface, ellipsoid, hyperboloid, polarization.
Mots-clés : moduli
@article{IM2_2008_72_1_a4,
     author = {V. V. Nikulin},
     title = {On the connected components of moduli of real polarized {K3-surfaces}},
     journal = {Izvestiya. Mathematics },
     pages = {91--111},
     publisher = {mathdoc},
     volume = {72},
     number = {1},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2008_72_1_a4/}
}
TY  - JOUR
AU  - V. V. Nikulin
TI  - On the connected components of moduli of real polarized K3-surfaces
JO  - Izvestiya. Mathematics 
PY  - 2008
SP  - 91
EP  - 111
VL  - 72
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2008_72_1_a4/
LA  - en
ID  - IM2_2008_72_1_a4
ER  - 
%0 Journal Article
%A V. V. Nikulin
%T On the connected components of moduli of real polarized K3-surfaces
%J Izvestiya. Mathematics 
%D 2008
%P 91-111
%V 72
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2008_72_1_a4/
%G en
%F IM2_2008_72_1_a4
V. V. Nikulin. On the connected components of moduli of real polarized K3-surfaces. Izvestiya. Mathematics , Tome 72 (2008) no. 1, pp. 91-111. http://geodesic.mathdoc.fr/item/IM2_2008_72_1_a4/

[1] V. A. Alekseev, V. V. Nikulin, “Klassifikatsiya poverkhnostei del Petstso s log-terminalnymi osobennostyami indeksa $\leq 2$, involyutsii na poverkhnostyakh $K3$ i gruppy otrazhenii v prostranstvakh Lobachevskogo”, Doklady po matematike i ee prilozheniyam, t. 2, vyp. 2, ed. E. V. Schepin, Rossiiskaya akademiya nauk, Matem. in-t im. V. A. Steklova, M., 1988, 51–150 | MR

[2] V. Alexeev, V. V. Nikulin, Del Pezzo and K3 surfaces, Mathem. Soc. of Japan Memoirs, 15, Math. Soc. Japan, Tokyo, 2006 | MR | Zbl

[3] J. W. S. Cassels, Rational quadratic forms, Academic Press, London–New York, 1978 | MR | Zbl

[4] D. G. James, “The number of embeddings of quadratic $\mathbb Z$-lattices”, J. Number Theory, 58:1 (1996), 1–8 | DOI | MR | Zbl

[5] V. M. Harlamov, “Additional congruences for the Euler characteristic of real algebraic manifolds of even dimensions”, Funct. Anal. Appl., 9:2 (1975), 134–141 | DOI | MR | Zbl

[6] M. P. Harlamov, “The topological type of nonsingular surfaces in $\mathbb{RP}^3$ of degree four”, Funct. Anal. Appl., 10:4 (1976), 295–305 | DOI | MR | Zbl

[7] Vik. S. Kulikov, “Degenerations of $K3$ surfaces and Enriques surfaces”, Math. USSR-Izv., 11:5 (1977), 957–989 | DOI | MR | Zbl

[8] R. Miranda, D. R. Morrison, “The number of embeddings of integral quadratic forms. I”, Proc. Japan Acad. Ser. A Math. Sci., 61:10 (1985), 317–320 | DOI | MR | Zbl

[9] R. Miranda, D. R. Morrison, “The number of embeddings of integral quadratic forms. II”, Proc. Japan Acad. Ser. A Math. Sci., 62:1 (1986), 29–32 | DOI | MR | Zbl

[10] V. V. Nikulin, “Konechnye gruppy avtomorfizmov kelerovykh poverkhnostei tipa $K3$”, Tr. MMO, 38 (1979), 75–137 | MR | Zbl

[11] V. V. Nikulin, “Integral symmetric bilinear forms and some of their applications”, Math. USSR-Izv., 14:1 (1980), 103–167 | DOI | MR | Zbl

[12] V. V. Nikulin, “Involutions of integral quadratic forms and their applications to real algebraic geometry”, Math. USSR-Izv., 22:1 (1984), 99–172 | DOI | MR | Zbl

[13] V. V. Nikulin, S. Saito, “Real $K3$ surfaces with non-symplectic involution and applications”, Proc. London Math. Soc., 90:3 (2005), 591–654 | DOI | MR | Zbl

[14] I. I. Pjateckiĭ-Šapiro, I. R. Šafarevič, “A Torelli theorem for algebraic surfaces of type $K3$”, Math. USSR-Izv., 5:3 (1975), 547–588 | DOI | MR | Zbl

[15] B. Saint-Donat, “Projective models of $K$-$3$ surfaces”, Amer. J. Math., 96 (1974), 602–639 | DOI | MR | Zbl