Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2008_72_1_a4, author = {V. V. Nikulin}, title = {On the connected components of moduli of real polarized {K3-surfaces}}, journal = {Izvestiya. Mathematics }, pages = {91--111}, publisher = {mathdoc}, volume = {72}, number = {1}, year = {2008}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2008_72_1_a4/} }
V. V. Nikulin. On the connected components of moduli of real polarized K3-surfaces. Izvestiya. Mathematics , Tome 72 (2008) no. 1, pp. 91-111. http://geodesic.mathdoc.fr/item/IM2_2008_72_1_a4/
[1] V. A. Alekseev, V. V. Nikulin, “Klassifikatsiya poverkhnostei del Petstso s log-terminalnymi osobennostyami indeksa $\leq 2$, involyutsii na poverkhnostyakh $K3$ i gruppy otrazhenii v prostranstvakh Lobachevskogo”, Doklady po matematike i ee prilozheniyam, t. 2, vyp. 2, ed. E. V. Schepin, Rossiiskaya akademiya nauk, Matem. in-t im. V. A. Steklova, M., 1988, 51–150 | MR
[2] V. Alexeev, V. V. Nikulin, Del Pezzo and K3 surfaces, Mathem. Soc. of Japan Memoirs, 15, Math. Soc. Japan, Tokyo, 2006 | MR | Zbl
[3] J. W. S. Cassels, Rational quadratic forms, Academic Press, London–New York, 1978 | MR | Zbl
[4] D. G. James, “The number of embeddings of quadratic $\mathbb Z$-lattices”, J. Number Theory, 58:1 (1996), 1–8 | DOI | MR | Zbl
[5] V. M. Harlamov, “Additional congruences for the Euler characteristic of real algebraic manifolds of even dimensions”, Funct. Anal. Appl., 9:2 (1975), 134–141 | DOI | MR | Zbl
[6] M. P. Harlamov, “The topological type of nonsingular surfaces in $\mathbb{RP}^3$ of degree four”, Funct. Anal. Appl., 10:4 (1976), 295–305 | DOI | MR | Zbl
[7] Vik. S. Kulikov, “Degenerations of $K3$ surfaces and Enriques surfaces”, Math. USSR-Izv., 11:5 (1977), 957–989 | DOI | MR | Zbl
[8] R. Miranda, D. R. Morrison, “The number of embeddings of integral quadratic forms. I”, Proc. Japan Acad. Ser. A Math. Sci., 61:10 (1985), 317–320 | DOI | MR | Zbl
[9] R. Miranda, D. R. Morrison, “The number of embeddings of integral quadratic forms. II”, Proc. Japan Acad. Ser. A Math. Sci., 62:1 (1986), 29–32 | DOI | MR | Zbl
[10] V. V. Nikulin, “Konechnye gruppy avtomorfizmov kelerovykh poverkhnostei tipa $K3$”, Tr. MMO, 38 (1979), 75–137 | MR | Zbl
[11] V. V. Nikulin, “Integral symmetric bilinear forms and some of their applications”, Math. USSR-Izv., 14:1 (1980), 103–167 | DOI | MR | Zbl
[12] V. V. Nikulin, “Involutions of integral quadratic forms and their applications to real algebraic geometry”, Math. USSR-Izv., 22:1 (1984), 99–172 | DOI | MR | Zbl
[13] V. V. Nikulin, S. Saito, “Real $K3$ surfaces with non-symplectic involution and applications”, Proc. London Math. Soc., 90:3 (2005), 591–654 | DOI | MR | Zbl
[14] I. I. Pjateckiĭ-Šapiro, I. R. Šafarevič, “A Torelli theorem for algebraic surfaces of type $K3$”, Math. USSR-Izv., 5:3 (1975), 547–588 | DOI | MR | Zbl
[15] B. Saint-Donat, “Projective models of $K$-$3$ surfaces”, Amer. J. Math., 96 (1974), 602–639 | DOI | MR | Zbl