Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2008_72_1_a3, author = {A. O. Ivanov and A. A. Tuzhilin}, title = {Immersed polygons and their diagonal triangulations}, journal = {Izvestiya. Mathematics }, pages = {63--90}, publisher = {mathdoc}, volume = {72}, number = {1}, year = {2008}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2008_72_1_a3/} }
A. O. Ivanov; A. A. Tuzhilin. Immersed polygons and their diagonal triangulations. Izvestiya. Mathematics , Tome 72 (2008) no. 1, pp. 63-90. http://geodesic.mathdoc.fr/item/IM2_2008_72_1_a3/
[1] N. S. Gusev, “Kanonicheskoe razlozhenie kusochno-affinnykh funktsii, mnogogranniki-sledy i geometricheskie variatsionnye zadachi”, Fundam. i prikl. matematika, 12:1 (2006), 57–94 | MR
[2] A. O. Ivanov, A. A. Tuzhilin, Teoriya ekstremalnykh setei, Sovrem. matem., In-t kompyuternykh issledovanii, Moskva–Izhevsk, 2003
[3] P. Fermat, “Abhandlungen über Maxima und Minima”, Oswalds, Klassiker der Exakten Wissenschaften, 238, 1934 | Zbl
[4] M. R. Garey, R. L. Graham, D. S. Johnson, “Some $NP$-complete geometric problems”, Eighth annual ACM symposium on theory of computing (Hershey, 1976), Assoc. Comput. Mach., New York, 1976, 10–22 | MR | Zbl
[5] Z. A. Melzak, “On the problem of Steiner”, Canad. Math. Bull., 4 (1961), 143–148 | MR | Zbl
[6] F. K. Hwang, “A linear time algorithm for full Steiner trees”, Oper. Res. Lett., 4:5 (1986), 235–237 | DOI | MR | Zbl
[7] V. A. Emelichev, O. I. Melnikov, V. I. Sarvanov, R. I. Tyshkevich, Lektsii po teorii grafov, Nauka, M., 1990 ; O. Melnikov, R. Tyshkevich, V. Yemelichev, V. Sarvanov, Lectures on graph theory, Bibliographisches Institut, Mannheim, 1994 | MR | Zbl | MR | Zbl
[8] J. B. Kruskal, “On the shortest spanning subtree of a graph and traveling salesman problem”, Proc. Amer. Math. Soc., 7:1 (1956), 48–50 | DOI | MR | Zbl
[9] P. K. Prim, “Kratchaishie svyazyvayuschie seti i nekotorye obobscheniya”, Kiberneticheskii sbornik, No2, Nauka, M., 1961, 95–107; R. C. Prim, “Shortest connection networks and some generalizations”, Bell System Tech. J., 36 (1957), 1389–1401
[10] B. Delaunay, “Sur la sphère vide”, Bull. Acad. Sci. USSR. VII, 1934, no. 6, 793–800 | Zbl
[11] E. N. Gilbert, H. O. Pollak, “Steiner minimal trees”, SIAM J. Appl. Math., 16:1 (1968), 1–29 | DOI | MR | Zbl
[12] R. L. Graham, F. K. Hwang, “A remark on Steiner minimal trees”, Bull. Inst. Math. Acad. Sinica, 4:1 (1976), 177–182 | MR | Zbl
[13] F. R. K. Chung, F. K. Hwang, “A lower bound for the Steiner tree problem”, SIAM J. Appl. Math., 34:1 (1978), 27–36 | DOI | MR | Zbl
[14] D. Z. Du, F. K. Hwang, “A new bound for the Steiner ratio”, Trans. Amer. Math. Soc., 278:1 (1983), 137–148 | DOI | MR | Zbl
[15] F. R. K. Chung, R. L. Graham, “A new bound for Euclidean Steiner minimal trees”, Discrete geometry and convexity (New York, 1982), Ann. New York Acad. Sci., 440, New York Acad. Sci., New York, 1985, 328–346 | DOI | MR | Zbl
[16] D. Z. Du, F. K. Hwang, “An approach for proving lower bounds: solution of Gilbert–Pollak's conjecture on steiner ratio”, 31st annual symposium on foundations of computer science, Vol. I, II (St. Louis, MO, 1990), IEEE Comput. Soc. Press, Los Alamitos, CA, 1990, 76–85 | MR
[17] D.-Z. Du, F. K. Hwang, “A proof of Gilbert–Pollak Conjecture on the Steiner ratio”, Algorithmica, 7:2–3 (1992), 121–135 | DOI | MR | Zbl
[18] E. B. Vinberg, Kurs algebry, Faktorial Press, M., 2002; E. B. Vinberg, A course in algebra, Grad. Stud. Math., 56, Amer. Math. Soc., Providence, RI, 2003 | MR | Zbl