Immersed polygons and their diagonal triangulations
Izvestiya. Mathematics , Tome 72 (2008) no. 1, pp. 63-90
Voir la notice de l'article provenant de la source Math-Net.Ru
We introduce the notion of an ‘immersed polygon’, which naturally
extends the notion of an ordinary planar polygon bounded by a closed
(embedded) polygonal arc to the case when this arc may have
self-intersections. We prove that every immersed polygon
admits a diagonal triangulation and the closure of every embedded
monotone polygonal arc bounds an immersed polygon. Given any
non-degenerate planar linear tree, we construct an immersed polygon
containing it.
@article{IM2_2008_72_1_a3,
author = {A. O. Ivanov and A. A. Tuzhilin},
title = {Immersed polygons and their diagonal triangulations},
journal = {Izvestiya. Mathematics },
pages = {63--90},
publisher = {mathdoc},
volume = {72},
number = {1},
year = {2008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_2008_72_1_a3/}
}
A. O. Ivanov; A. A. Tuzhilin. Immersed polygons and their diagonal triangulations. Izvestiya. Mathematics , Tome 72 (2008) no. 1, pp. 63-90. http://geodesic.mathdoc.fr/item/IM2_2008_72_1_a3/