Immersed polygons and their diagonal triangulations
Izvestiya. Mathematics , Tome 72 (2008) no. 1, pp. 63-90

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce the notion of an ‘immersed polygon’, which naturally extends the notion of an ordinary planar polygon bounded by a closed (embedded) polygonal arc to the case when this arc may have self-intersections. We prove that every immersed polygon admits a diagonal triangulation and the closure of every embedded monotone polygonal arc bounds an immersed polygon. Given any non-degenerate planar linear tree, we construct an immersed polygon containing it.
@article{IM2_2008_72_1_a3,
     author = {A. O. Ivanov and A. A. Tuzhilin},
     title = {Immersed polygons and their diagonal triangulations},
     journal = {Izvestiya. Mathematics },
     pages = {63--90},
     publisher = {mathdoc},
     volume = {72},
     number = {1},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2008_72_1_a3/}
}
TY  - JOUR
AU  - A. O. Ivanov
AU  - A. A. Tuzhilin
TI  - Immersed polygons and their diagonal triangulations
JO  - Izvestiya. Mathematics 
PY  - 2008
SP  - 63
EP  - 90
VL  - 72
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2008_72_1_a3/
LA  - en
ID  - IM2_2008_72_1_a3
ER  - 
%0 Journal Article
%A A. O. Ivanov
%A A. A. Tuzhilin
%T Immersed polygons and their diagonal triangulations
%J Izvestiya. Mathematics 
%D 2008
%P 63-90
%V 72
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2008_72_1_a3/
%G en
%F IM2_2008_72_1_a3
A. O. Ivanov; A. A. Tuzhilin. Immersed polygons and their diagonal triangulations. Izvestiya. Mathematics , Tome 72 (2008) no. 1, pp. 63-90. http://geodesic.mathdoc.fr/item/IM2_2008_72_1_a3/