On a multidimensional generalization of Lagrange's theorem on continued fractions
Izvestiya. Mathematics , Tome 72 (2008) no. 1, pp. 47-61

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove a multidimensional analogue of the classical Lagrange theorem on continued fractions using Klein polyhedra as a multidimensional generalization of continued fractions.
@article{IM2_2008_72_1_a2,
     author = {O. N. German and E. L. Lakshtanov},
     title = {On a multidimensional generalization of {Lagrange's} theorem on continued fractions},
     journal = {Izvestiya. Mathematics },
     pages = {47--61},
     publisher = {mathdoc},
     volume = {72},
     number = {1},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2008_72_1_a2/}
}
TY  - JOUR
AU  - O. N. German
AU  - E. L. Lakshtanov
TI  - On a multidimensional generalization of Lagrange's theorem on continued fractions
JO  - Izvestiya. Mathematics 
PY  - 2008
SP  - 47
EP  - 61
VL  - 72
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2008_72_1_a2/
LA  - en
ID  - IM2_2008_72_1_a2
ER  - 
%0 Journal Article
%A O. N. German
%A E. L. Lakshtanov
%T On a multidimensional generalization of Lagrange's theorem on continued fractions
%J Izvestiya. Mathematics 
%D 2008
%P 47-61
%V 72
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2008_72_1_a2/
%G en
%F IM2_2008_72_1_a2
O. N. German; E. L. Lakshtanov. On a multidimensional generalization of Lagrange's theorem on continued fractions. Izvestiya. Mathematics , Tome 72 (2008) no. 1, pp. 47-61. http://geodesic.mathdoc.fr/item/IM2_2008_72_1_a2/