On a multidimensional generalization of Lagrange's theorem on continued fractions
Izvestiya. Mathematics , Tome 72 (2008) no. 1, pp. 47-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove a multidimensional analogue of the classical Lagrange theorem on continued fractions using Klein polyhedra as a multidimensional generalization of continued fractions.
@article{IM2_2008_72_1_a2,
     author = {O. N. German and E. L. Lakshtanov},
     title = {On a multidimensional generalization of {Lagrange's} theorem on continued fractions},
     journal = {Izvestiya. Mathematics },
     pages = {47--61},
     publisher = {mathdoc},
     volume = {72},
     number = {1},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2008_72_1_a2/}
}
TY  - JOUR
AU  - O. N. German
AU  - E. L. Lakshtanov
TI  - On a multidimensional generalization of Lagrange's theorem on continued fractions
JO  - Izvestiya. Mathematics 
PY  - 2008
SP  - 47
EP  - 61
VL  - 72
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2008_72_1_a2/
LA  - en
ID  - IM2_2008_72_1_a2
ER  - 
%0 Journal Article
%A O. N. German
%A E. L. Lakshtanov
%T On a multidimensional generalization of Lagrange's theorem on continued fractions
%J Izvestiya. Mathematics 
%D 2008
%P 47-61
%V 72
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2008_72_1_a2/
%G en
%F IM2_2008_72_1_a2
O. N. German; E. L. Lakshtanov. On a multidimensional generalization of Lagrange's theorem on continued fractions. Izvestiya. Mathematics , Tome 72 (2008) no. 1, pp. 47-61. http://geodesic.mathdoc.fr/item/IM2_2008_72_1_a2/

[1] P. Erdős, P. M. Gruber, J. Hammer, Lattice points, Pitman Monogr. Surveys Pure Appl. Math., 39, Longman Scientific Technical, Harlow; Wiley, New York, 1989 | MR | Zbl

[2] E. I. Korkina, “Two-dimensional continued fractions. The simplest examples”, Proc. Steklov Inst. Math., 209 (1995), 124–144 | MR | Zbl

[3] J.-O. Moussafir, “Convex hulls of integral points”, J. Math. Sci. (N. Y.), 113:5 (2003), 647–665 | DOI | MR | Zbl

[4] G. Lachaud, “Polyèdre d'Arnol'd et voile d'un cône simplicial: analogues du théorème de Lagrange [The Arnold polyhedron and the sail of a simplicial cone: analogues of the Lagrange theorem]”, C. R. Acad. Sci. Paris Sér. I Math., 317:8 (1993), 711–716 | MR | Zbl

[5] E. Korkina, “La périodecité des fractions continues multidimensionnelles [The periodicity of multidimensional continued fractions]”, C. R. Acad. Sci. Paris Sér. I Math., 319:8 (1994), 777–780 | MR | Zbl

[6] G. Lachaud, “Sails and Klein polyhedra”, Number theory, Proceedings of the international conference on discrete mathematics and number theory (Tiruchirapalli, 1996), Contemp. Math., 210, ed. V. K. Murty, 1998, 373–385 | MR | Zbl

[7] V. I. Arnold, “Higher dimensional continued fractions”, Regul. Chaotic Dyn., 3:3 (1998), 10–17 | DOI | MR | Zbl

[8] G. Lachaud, Voiles et Polyèdres de Klein, Act. Sci. Ind., Hermann, Paris, 2002

[9] Z. I. Borevich, I. R. Shafarevich, Number theory, Pure Appl. Math., 20, Academic Press, New York–London | MR | MR | Zbl | Zbl

[10] H. Tsuchihashi, “Higher-dimensional analogues of periodic continued fractions and cusp singularities”, Tohoku Math. J. (2), 35:4 (1983), 607–639 | DOI | MR | Zbl

[11] J. W. S. Cassels, H. P. F. Swinnerton-Dyer, “On the product of three homogeneous linear forms and indefinite ternary quadratic forms”, Philos. Trans. Roy. Soc. London Ser. A, 248:940 (1955), 73–96 | DOI | MR | Zbl

[12] B. F. Skubenko, “Minimum of a decomposable cubic form of three variables”, J. Soviet Math., 53:3 (1991), 302–310 | DOI | MR | Zbl | Zbl

[13] B. F. Skubenko, “Minima of decomposable forms of degree $n$ in $n$ variables for $n\ge 3$”, J. Soviet Math., 62:4 (1992), 2928–2935 | DOI | MR | Zbl | Zbl

[14] O. N. German, “Sails and norm minima of lattices”, Sb. Math., 196:3 (2005), 337–365 | DOI | MR | Zbl

[15] O. N. German, “Klein polyhedra and lattices with positive norm minima”, J. Théor. Nombres Bordeaux, 19 (2007), 175–190 | MR | Zbl