Waring's problem with the Ramanujan $\tau$-function
Izvestiya. Mathematics , Tome 72 (2008) no. 1, pp. 35-46.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that for every integer $N$ the Diophantine equation $\sum_{i=1}^{74000}\tau(n_i)=N$, where $\tau(n)$ is the Ramanujan $\tau$-function, has a solution in positive integers $n_1, n_2,\dots, n_{74000}$ satisfying the condition $\max_{1\le i\le 74000}n_i\,{\ll}|N|^{2/11}+1$. We also consider similar questions in residue fields modulo a large prime $p$.
@article{IM2_2008_72_1_a1,
     author = {M. Z. Garaev and V. C. Garcia and S. V. Konyagin},
     title = {Waring's problem with the {Ramanujan} $\tau$-function},
     journal = {Izvestiya. Mathematics },
     pages = {35--46},
     publisher = {mathdoc},
     volume = {72},
     number = {1},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2008_72_1_a1/}
}
TY  - JOUR
AU  - M. Z. Garaev
AU  - V. C. Garcia
AU  - S. V. Konyagin
TI  - Waring's problem with the Ramanujan $\tau$-function
JO  - Izvestiya. Mathematics 
PY  - 2008
SP  - 35
EP  - 46
VL  - 72
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2008_72_1_a1/
LA  - en
ID  - IM2_2008_72_1_a1
ER  - 
%0 Journal Article
%A M. Z. Garaev
%A V. C. Garcia
%A S. V. Konyagin
%T Waring's problem with the Ramanujan $\tau$-function
%J Izvestiya. Mathematics 
%D 2008
%P 35-46
%V 72
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2008_72_1_a1/
%G en
%F IM2_2008_72_1_a1
M. Z. Garaev; V. C. Garcia; S. V. Konyagin. Waring's problem with the Ramanujan $\tau$-function. Izvestiya. Mathematics , Tome 72 (2008) no. 1, pp. 35-46. http://geodesic.mathdoc.fr/item/IM2_2008_72_1_a1/

[1] P. Deligne, “La conjecture de Weil. I”, Inst. Hautes Études Sci. Publ. Math., 1974, no. 43, 273–307 | DOI | MR | MR | Zbl | Zbl

[2] H. Iwaniec, Topics in clasical automorphic forms, Grad. Stud. Math., Amer. Math. Soc., Providence, RI, 1997 | MR | Zbl

[3] N. Koblitz, Introduction to elliptic curves and modular forms, Grad. Texts in Math., 97, Springer-Verlag, New York, 1984 | MR | MR | Zbl

[4] J.-P. Serre, “Congruences et formes modulaires [d'après H. P. F. Swinnerton-Dyer]”, Séminaire Bourbaki, 24e année (1971/1972), Exp. No. 416, Lecture Notes in Math., 317, Springer, Berlin, 1973, 319–338 | DOI | MR | MR | Zbl | Zbl

[5] J. Bourgain, N. Katz, T. Tao, “A sum-product estimate in finite fileds and applications”, Geom. Func. Anal., 14:1 (2004), 27–57 | DOI | MR | Zbl

[6] I. E. Shparlinski, “On the value set of the Ramanujan function”, Arch. Math., 85:6 (2005), 508–513 | DOI | MR | Zbl

[7] G. I. Arkhipov, V. N. Chubarikov, “O chisle slagaemykh v additivnoi probleme Vinogradova i ee obobscheniyakh”, IV Mezhdunarodnaya konferentsiya "Sovremennye problemy teorii chisel i ee prilozheniya": Aktualnye problemy, Ch. I (Tula, 10–15 sentyabrya 2001), Mekh.-mat. MGU im. M. V. Lomonosova, M., 2002, 5–38 | MR | Zbl

[8] A. V. Kumchev, D. I. Tolev, “An invitation to additive prime number theory”, Serdica Math. J., 31:1–2 (2005), 1–74 | MR

[9] A. A. Karatsuba, “Additive congruences”, Izv. Math., 61:2 (1997), 317–329 | DOI | MR | Zbl

[10] Khua Lo-Ken, Additivnaya teoriya prostykh chisel, Tr. MIAN, 22, 1947 | MR | Zbl

[11] A. A. Glibichuk, “Combinational properties of sets of residues modulo a prime and the Erdős–Graham problem”, Math. Notes, 79:3–4 (2006), 356–365 | DOI | MR | Zbl

[12] D. Niebur, “A formula for Ramanujan's $\tau$-function”, Illinois J. Math., 19 (1975), 448–449 | MR | Zbl

[13] J. Bourgain, “More on the sum-product phenomenon in prime fields and its applications”, Int. J. Number Theory, 1:1 (2005), 1–32 | DOI | MR | Zbl