Extremal problems for colourings of uniform hypergraphs
Izvestiya. Mathematics , Tome 71 (2007) no. 6, pp. 1253-1290

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a classical problem (first posed by Erdős) in the extremal theory of hypergraphs. According to Erdős, a hypergraph possesses property $B$ if its set of vertices admits a 2-colouring such that no edge of the hypergraph is monochromatic. The problem is to find the minimum $m(n)$ of all $m$ such that there is an $n$-uniform (each edge contains exactly $n$ vertices) hypergraph with exactly $m$ edges that does not possess property $B$. We consider more general problems (including the case of polychromatic colourings) and introduce a number of parametric properties of hypergraphs. We obtain estimates for analogues of $m(n)$ for extremal problems on various classes of hypergraphs.
@article{IM2_2007_71_6_a6,
     author = {D. A. Shabanov},
     title = {Extremal problems for colourings of uniform hypergraphs},
     journal = {Izvestiya. Mathematics },
     pages = {1253--1290},
     publisher = {mathdoc},
     volume = {71},
     number = {6},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2007_71_6_a6/}
}
TY  - JOUR
AU  - D. A. Shabanov
TI  - Extremal problems for colourings of uniform hypergraphs
JO  - Izvestiya. Mathematics 
PY  - 2007
SP  - 1253
EP  - 1290
VL  - 71
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2007_71_6_a6/
LA  - en
ID  - IM2_2007_71_6_a6
ER  - 
%0 Journal Article
%A D. A. Shabanov
%T Extremal problems for colourings of uniform hypergraphs
%J Izvestiya. Mathematics 
%D 2007
%P 1253-1290
%V 71
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2007_71_6_a6/
%G en
%F IM2_2007_71_6_a6
D. A. Shabanov. Extremal problems for colourings of uniform hypergraphs. Izvestiya. Mathematics , Tome 71 (2007) no. 6, pp. 1253-1290. http://geodesic.mathdoc.fr/item/IM2_2007_71_6_a6/