Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_2007_71_6_a5, author = {G. V. Sandrakov}, title = {Multiphase homogenized diffusion models for problems with several parameters}, journal = {Izvestiya. Mathematics }, pages = {1193--1252}, publisher = {mathdoc}, volume = {71}, number = {6}, year = {2007}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_2007_71_6_a5/} }
G. V. Sandrakov. Multiphase homogenized diffusion models for problems with several parameters. Izvestiya. Mathematics , Tome 71 (2007) no. 6, pp. 1193-1252. http://geodesic.mathdoc.fr/item/IM2_2007_71_6_a5/
[1] V. G. Maz'ya, Sobolev spaces, Springer Ser. Soviet Math., Springer-Verlag, Berlin, 1985 | MR | MR | Zbl | Zbl
[2] G. Dal Maso, I. V. Skrypnik, “Capacity theory for monotone operators”, Potential Anal., 7:4 (1997), 765–803 | DOI | MR | Zbl
[3] G. Duvaut, J. L. Lions, Inequalities in mechanics and physics, Grundlehren Math. Wiss., 219, Springer-Verlag, Berlin–Heidelberg–New York, 1976 | MR | MR | Zbl | Zbl
[4] R. I. Nigmatulin, Dinamika mnogofaznykh sred, Ch. I, Nauka, M., 1987
[5] G. V. Sandrakov, “Averaging principles for equations with rapidly oscillating coefficients”, Math. USSR-Sb., 68:2 (1991), 503–553 | DOI | MR | Zbl
[6] G. V. Sandrakov, “Homogenization of elasticity equations with contrasting coefficients”, Sb. Math., 190:12 (1999), 1749–1806 | DOI | MR | Zbl
[7] G. V. Sandrakov, “Diffusion in a strongly inhomogeneous periodic medium”, Russian Math. Surveys, 51:5 (1996), 977–978 | DOI
[8] G. V. Sandrakov, “The homogenization of nonstationary equations with contrast coefficients”, Dokl. Math., 56:1 (1997), 586–589 | MR | MR | Zbl
[9] G. V. Sandrakov, “The homogenization of nonstationary problems in the theory of strongly nonhomogeneous elastic media”, Dokl. Math., 57:1 (1998), 54–57 | MR | Zbl
[10] G. V. Sandrakov, “Homogenization of parabolic equations with contrasting coefficients”, Izv. Math., 63:5 (1999), 1015–1061 | DOI | MR | Zbl
[11] G. V. Sandrakov, “The averaging of dynamic problems in the theory of elasticity with strongly varying coefficients”, Dokl. Math., 58:2 (1998), 238–241 | MR | Zbl
[12] G. V. Sandrakov, “Averaging of dynamic processes in composites periodically reinforced by fibers”, Dokl. Math., 61:3 (2000), 346–349 | MR | Zbl
[13] G. V. Sandrakov, “Multiphase homogenized models for diffusion in highly nonhomogeneous media”, Dokl. Math., 70:1 (2004), 507–511 | MR
[14] G. V. Sandrakov, “The influence of viscosity on oscillatory phenomena in linearized hydrodynamics”, Dokl. Math., 66:2 (2002), 241–244 | MR | Zbl
[15] G. V. Sandrakov, “Multiphase diffusion models in homogenizalion”, Dokl. Math., 69:1 (2004), 50–53 | MR | Zbl
[16] G. V. Sandrakov, “Multiphase models of nonstationary diffusion in homogenization”, Comput. Math. Math. Phys., 44:10 (2004), 1741–1756 | MR | Zbl
[17] J.-L. Lions, E. Magenes, Non-homogeneous boundary value problems and applications, Vol. I–III, Grundlehren Math. Wiss., 181–183, Springer-Verlag, New York–Heidelberg, 1972, 1972, 1973 | MR | MR | MR | MR | Zbl | Zbl | Zbl | Zbl
[18] R. Temam, Navier–Stokes equations. Theory and numerical analysis, Stud. Math. Appl., 2, North-Holland, Amsterdam–New York, 1979 | MR | MR | Zbl | Zbl
[19] N. S. Bakhvalov, G. Panasenko, Homogenisation: Averaging processes in periodic media. Mathematical problems in the mechanics of composite materials, Math. Appl. (Soviet Ser.), 36, Kluwer, Dordrecht, 1989 | MR | MR | Zbl | Zbl
[20] G. V. Sandrakov, “Averaging of the process of the filtration of a two-phase flow of immiscible fluids”, Dokl. Math., 62:2 (2000), 186–189 | MR | MR | Zbl
[21] O. V. Besov, V. P. Ilin, S. M. Nikolskii, Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1996 ; O. V. Besov, V. P. Il'in, S. M. Nikol'skii, Integral representations of functions and imbedding theorems, Vol. I, II, Winston, Washington; Wiley, New York–Toronto, 1978 ; 1979 | MR | Zbl | MR | Zbl | MR | Zbl
[22] V. V. Zhikov, “On the homogenization of nonlinear variational problems in perforated domains”, Russian J. Math. Phys., 2:3 (1994), 393–408 | MR | Zbl
[23] V. V. Zhikov, “On an extension of the method of two-scale convergence and its applications”, Sb. Math., 191:7 (2000), 973–1014 | DOI | MR | Zbl
[24] M. Mitrea, M. Taylor, “Boundary layer methods for Lipschitz domains in Riemannian manifolds”, J. Funct. Anal., 163:2 (1999), 181–251 | DOI | MR | Zbl
[25] M. S. Agranovich, “Spectral problems for second-order strongly elliptic systems in smooth and non-smooth domains”, Russian Math. Surveys, 57:5 (2002), 847–920 | DOI | MR | Zbl
[26] G. Allaire, “Homogenization and two-scale convergence”, SIAM J. Math. Anal., 23:6 (1992), 1482–1518 | DOI | MR | Zbl
[27] U. Hornung, R. E. Showalter, “Diffusion models for fractured media”, J. Math Anal. Appl., 147:1 (1990), 69–80 | DOI | MR | Zbl
[28] T. Arbogast, J. Douglas, U. Hornung, “Derivation of the double porosity model of single phase flow via homogenization theory”, SIAM J. Math. Anal., 21:4 (1990), 823–836 | DOI | MR | Zbl
[29] G. Allaire, “One-phase Newtonian flow”, Homogenization and porous media, Interdiscip. Appl. Math., 6, ed. U. Hornung, Springer-Verlag, New York, 1997, 45–68 | MR | Zbl
[30] A. Bensoussan, J.-L. Lions, G. Papanicolau, Asymptotic analysis for periodic structures, Stud. Math. Appl., 5, North-Holland, Amsterdam, 1978 | MR | Zbl
[31] E. Sánchez-Palencia, Non-homogeneous media and vibration theory, Lecture Notes in Phys., 127, Springer-Verlag, Berlin–New York, 1980 | MR | MR | Zbl
[32] L. Tartar, “Memory effects and homogenization”, Arch. Rational Mech. Anal., 111:2 (1990), 121–133 | DOI | MR | Zbl
[33] M. S. Agranovich, M. I. Vishik, “Elliptic problems with a parameter and parabolic problems of general type”, Russian Math. Surveys, 19:3 (1964), 53–157 | DOI | MR | MR | Zbl
[34] R. E. Showalter, “Microstructure models of porous media”, Homogenization and porous media, Interdiscip. Appl. Math., 6, ed. U. Hornung, Springer-Verlag, New York, 1997, 183–202 | MR | Zbl
[35] D. Kinderlehrer, G. Stampacchia, An introduction to variational inequalities and their applications, Pure Appl. Math., 88, Academic Press, New York–London, 1980 | MR | MR | Zbl | Zbl
[36] G. P. Panasenko, “Multicomponent homogenization of processes in strongly nonhomogeneous structures”, Math. USSR-Sb., 69:1 (1991), 143–153 | DOI | MR | Zbl | Zbl
[37] N. S. Bakhvalov, M. E. Eglit, “Explicit calculation of effective moduli for composites reinforced by an irregular system of fibres”, Dokl. Math., 51:1 (1995), 46–50 | MR | Zbl
[38] N. S. Bakhvalov, M. E. Eglit, “The limiting behaviour of periodic media with soft-modular inclusions”, Comput. Math. Math. Phys., 35:6 (1995), 719–729 | MR | Zbl
[39] G. V. Sandrakov, Osrednenie nestatsionarnykh uravnenii s silno izmenyayuschimisya koeffitsientami, Dis. $\dots$ dokt. fiz.-matem. nauk, MGU, M., 1998
[40] I. Ts. Gokhberg, “Ob lineinykh operatorakh, analiticheski zavisyaschikh ot parametra”, Dokl. RAN., 78:4 (1951), 629–632 | MR | Zbl
[41] P. M. Blekher, “Ob operatorakh, zavisyaschikh meromorfno ot parametra”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 24:5 (1969), 30–36 | MR | Zbl
[42] I. C. Gohberg, E. I. Sigal, “An operator generalization of the logarithmic residue theorem and the theorem of Rouché”, Math. USSR-Sb., 13:4 (1971), 603–625 | DOI | MR | Zbl
[43] B. R. Vajnberg, Asymptotic methods in equations of mathematical physics, Gordon and Breach, New York, 1989 | MR | MR | Zbl | Zbl
[44] T. Kato, Perturbation theory for linear operators, Grundlehren Math. Wiss., 132, Springer-Verlag, Berlin–Heidelberg–New York, 1966 | MR | MR | Zbl | Zbl
[45] M. Reed and B. Simon, Methods of modern mathematical physics. Vol. 4. Analysis of operators, Acad. Press, New York–San Francisco–London, 1978 | MR | MR | Zbl | Zbl
[46] V. S. Vladimirov, Equations of mathematical physics, Dekker, New York, 1971 | MR | MR | Zbl | Zbl
[47] A. N. Kolmogorov, S. V. Fomin, Introductory real analysis, Dover, New York, 1975 | MR | MR | Zbl | Zbl
[48] A. V. Bitsadze, Osnovy teorii analiticheskikh funktsii kompleksnogo peremennogo, Nauka, M., 1984 | MR | Zbl
[49] T. A. Mel'nik, S. A. Nazarov, “The asymptotics of the solution to the Neumann spectral problem in a domain of the “dense-comb” type”, J. Math. Sci. (New York), 85:6 (1997), 2326–2346 | DOI | MR | Zbl
[50] G. P. Panasenko, “Asymptotic behavior of the eigenvalues of elliptic equations with strongly varying coefficients”, J. Soviet Math., 47:4 (1989), 2638–2651 | MR | Zbl | Zbl
[51] J.-L. Lions, Perturbations singulières dans les problèmes aux limites et en contrôle optimal, Lecture Notes in Math., 323, Springer-Verlag, Berlin, 1973 | MR | Zbl
[52] M. Reed, B. Simon, Methods of modern mathematical physics. Vol. 1. Functional analysis, Acad. Press, New York–London, 1972 | MR | MR | Zbl
[53] R. Hempel, K. Lienau, “Spectral properties of periodic media in the large coupling limit”, Comm. Partial Differential Equations, 25:7–8 (2000), 1445–1470 | DOI | MR | Zbl
[54] G. V. Sandrakov, “Homogenization of non-stationary Stokes equations with viscosity in a perforated domain”, Izv. Math., 61:1 (1997), 113–141 | DOI | MR | Zbl