Multiphase homogenized diffusion models for problems with several parameters
Izvestiya. Mathematics , Tome 71 (2007) no. 6, pp. 1193-1252.

Voir la notice de l'article provenant de la source Math-Net.Ru

We deal with the homogenization of initial-boundary-value problems for parabolic equations with asymptotically degenerate rapidly oscillating periodic coefficients, which are models for diffusion processes in a strongly inhomogeneous medium. The solutions of these problems depend on a finite positive parameter and two small positive parameters. We obtain homogenized initial-boundary-value problems (whose solutions determine approximate asymptotics for solutions of the problems under consideration) and prove estimates for the accuracy of these approximations. The homogenized problems are initial-boundary-value problems for integro-differential equations whose solutions depend on additional positive parameters: the intensity of diffusion exchange and the impulse exchange. In the general case, the homogenized equations form a system of equations coupled through the exchange coefficients and define multiphase mathematical models of diffusion for a homogenized (limiting) medium. We consider the spectral properties of some homogenized problems. We also prove assertions on asymptotic reductions of the homogenized problems under additional hypothesis on the limiting behaviour of the exchange parameters.
@article{IM2_2007_71_6_a5,
     author = {G. V. Sandrakov},
     title = {Multiphase homogenized diffusion models for problems with several parameters},
     journal = {Izvestiya. Mathematics },
     pages = {1193--1252},
     publisher = {mathdoc},
     volume = {71},
     number = {6},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_2007_71_6_a5/}
}
TY  - JOUR
AU  - G. V. Sandrakov
TI  - Multiphase homogenized diffusion models for problems with several parameters
JO  - Izvestiya. Mathematics 
PY  - 2007
SP  - 1193
EP  - 1252
VL  - 71
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_2007_71_6_a5/
LA  - en
ID  - IM2_2007_71_6_a5
ER  - 
%0 Journal Article
%A G. V. Sandrakov
%T Multiphase homogenized diffusion models for problems with several parameters
%J Izvestiya. Mathematics 
%D 2007
%P 1193-1252
%V 71
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_2007_71_6_a5/
%G en
%F IM2_2007_71_6_a5
G. V. Sandrakov. Multiphase homogenized diffusion models for problems with several parameters. Izvestiya. Mathematics , Tome 71 (2007) no. 6, pp. 1193-1252. http://geodesic.mathdoc.fr/item/IM2_2007_71_6_a5/

[1] V. G. Maz'ya, Sobolev spaces, Springer Ser. Soviet Math., Springer-Verlag, Berlin, 1985 | MR | MR | Zbl | Zbl

[2] G. Dal Maso, I. V. Skrypnik, “Capacity theory for monotone operators”, Potential Anal., 7:4 (1997), 765–803 | DOI | MR | Zbl

[3] G. Duvaut, J. L. Lions, Inequalities in mechanics and physics, Grundlehren Math. Wiss., 219, Springer-Verlag, Berlin–Heidelberg–New York, 1976 | MR | MR | Zbl | Zbl

[4] R. I. Nigmatulin, Dinamika mnogofaznykh sred, Ch. I, Nauka, M., 1987

[5] G. V. Sandrakov, “Averaging principles for equations with rapidly oscillating coefficients”, Math. USSR-Sb., 68:2 (1991), 503–553 | DOI | MR | Zbl

[6] G. V. Sandrakov, “Homogenization of elasticity equations with contrasting coefficients”, Sb. Math., 190:12 (1999), 1749–1806 | DOI | MR | Zbl

[7] G. V. Sandrakov, “Diffusion in a strongly inhomogeneous periodic medium”, Russian Math. Surveys, 51:5 (1996), 977–978 | DOI

[8] G. V. Sandrakov, “The homogenization of nonstationary equations with contrast coefficients”, Dokl. Math., 56:1 (1997), 586–589 | MR | MR | Zbl

[9] G. V. Sandrakov, “The homogenization of nonstationary problems in the theory of strongly nonhomogeneous elastic media”, Dokl. Math., 57:1 (1998), 54–57 | MR | Zbl

[10] G. V. Sandrakov, “Homogenization of parabolic equations with contrasting coefficients”, Izv. Math., 63:5 (1999), 1015–1061 | DOI | MR | Zbl

[11] G. V. Sandrakov, “The averaging of dynamic problems in the theory of elasticity with strongly varying coefficients”, Dokl. Math., 58:2 (1998), 238–241 | MR | Zbl

[12] G. V. Sandrakov, “Averaging of dynamic processes in composites periodically reinforced by fibers”, Dokl. Math., 61:3 (2000), 346–349 | MR | Zbl

[13] G. V. Sandrakov, “Multiphase homogenized models for diffusion in highly nonhomogeneous media”, Dokl. Math., 70:1 (2004), 507–511 | MR

[14] G. V. Sandrakov, “The influence of viscosity on oscillatory phenomena in linearized hydrodynamics”, Dokl. Math., 66:2 (2002), 241–244 | MR | Zbl

[15] G. V. Sandrakov, “Multiphase diffusion models in homogenizalion”, Dokl. Math., 69:1 (2004), 50–53 | MR | Zbl

[16] G. V. Sandrakov, “Multiphase models of nonstationary diffusion in homogenization”, Comput. Math. Math. Phys., 44:10 (2004), 1741–1756 | MR | Zbl

[17] J.-L. Lions, E. Magenes, Non-homogeneous boundary value problems and applications, Vol. I–III, Grundlehren Math. Wiss., 181–183, Springer-Verlag, New York–Heidelberg, 1972, 1972, 1973 | MR | MR | MR | MR | Zbl | Zbl | Zbl | Zbl

[18] R. Temam, Navier–Stokes equations. Theory and numerical analysis, Stud. Math. Appl., 2, North-Holland, Amsterdam–New York, 1979 | MR | MR | Zbl | Zbl

[19] N. S. Bakhvalov, G. Panasenko, Homogenisation: Averaging processes in periodic media. Mathematical problems in the mechanics of composite materials, Math. Appl. (Soviet Ser.), 36, Kluwer, Dordrecht, 1989 | MR | MR | Zbl | Zbl

[20] G. V. Sandrakov, “Averaging of the process of the filtration of a two-phase flow of immiscible fluids”, Dokl. Math., 62:2 (2000), 186–189 | MR | MR | Zbl

[21] O. V. Besov, V. P. Ilin, S. M. Nikolskii, Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1996 ; O. V. Besov, V. P. Il'in, S. M. Nikol'skii, Integral representations of functions and imbedding theorems, Vol. I, II, Winston, Washington; Wiley, New York–Toronto, 1978 ; 1979 | MR | Zbl | MR | Zbl | MR | Zbl

[22] V. V. Zhikov, “On the homogenization of nonlinear variational problems in perforated domains”, Russian J. Math. Phys., 2:3 (1994), 393–408 | MR | Zbl

[23] V. V. Zhikov, “On an extension of the method of two-scale convergence and its applications”, Sb. Math., 191:7 (2000), 973–1014 | DOI | MR | Zbl

[24] M. Mitrea, M. Taylor, “Boundary layer methods for Lipschitz domains in Riemannian manifolds”, J. Funct. Anal., 163:2 (1999), 181–251 | DOI | MR | Zbl

[25] M. S. Agranovich, “Spectral problems for second-order strongly elliptic systems in smooth and non-smooth domains”, Russian Math. Surveys, 57:5 (2002), 847–920 | DOI | MR | Zbl

[26] G. Allaire, “Homogenization and two-scale convergence”, SIAM J. Math. Anal., 23:6 (1992), 1482–1518 | DOI | MR | Zbl

[27] U. Hornung, R. E. Showalter, “Diffusion models for fractured media”, J. Math Anal. Appl., 147:1 (1990), 69–80 | DOI | MR | Zbl

[28] T. Arbogast, J. Douglas, U. Hornung, “Derivation of the double porosity model of single phase flow via homogenization theory”, SIAM J. Math. Anal., 21:4 (1990), 823–836 | DOI | MR | Zbl

[29] G. Allaire, “One-phase Newtonian flow”, Homogenization and porous media, Interdiscip. Appl. Math., 6, ed. U. Hornung, Springer-Verlag, New York, 1997, 45–68 | MR | Zbl

[30] A. Bensoussan, J.-L. Lions, G. Papanicolau, Asymptotic analysis for periodic structures, Stud. Math. Appl., 5, North-Holland, Amsterdam, 1978 | MR | Zbl

[31] E. Sánchez-Palencia, Non-homogeneous media and vibration theory, Lecture Notes in Phys., 127, Springer-Verlag, Berlin–New York, 1980 | MR | MR | Zbl

[32] L. Tartar, “Memory effects and homogenization”, Arch. Rational Mech. Anal., 111:2 (1990), 121–133 | DOI | MR | Zbl

[33] M. S. Agranovich, M. I. Vishik, “Elliptic problems with a parameter and parabolic problems of general type”, Russian Math. Surveys, 19:3 (1964), 53–157 | DOI | MR | MR | Zbl

[34] R. E. Showalter, “Microstructure models of porous media”, Homogenization and porous media, Interdiscip. Appl. Math., 6, ed. U. Hornung, Springer-Verlag, New York, 1997, 183–202 | MR | Zbl

[35] D. Kinderlehrer, G. Stampacchia, An introduction to variational inequalities and their applications, Pure Appl. Math., 88, Academic Press, New York–London, 1980 | MR | MR | Zbl | Zbl

[36] G. P. Panasenko, “Multicomponent homogenization of processes in strongly nonhomogeneous structures”, Math. USSR-Sb., 69:1 (1991), 143–153 | DOI | MR | Zbl | Zbl

[37] N. S. Bakhvalov, M. E. Eglit, “Explicit calculation of effective moduli for composites reinforced by an irregular system of fibres”, Dokl. Math., 51:1 (1995), 46–50 | MR | Zbl

[38] N. S. Bakhvalov, M. E. Eglit, “The limiting behaviour of periodic media with soft-modular inclusions”, Comput. Math. Math. Phys., 35:6 (1995), 719–729 | MR | Zbl

[39] G. V. Sandrakov, Osrednenie nestatsionarnykh uravnenii s silno izmenyayuschimisya koeffitsientami, Dis. $\dots$ dokt. fiz.-matem. nauk, MGU, M., 1998

[40] I. Ts. Gokhberg, “Ob lineinykh operatorakh, analiticheski zavisyaschikh ot parametra”, Dokl. RAN., 78:4 (1951), 629–632 | MR | Zbl

[41] P. M. Blekher, “Ob operatorakh, zavisyaschikh meromorfno ot parametra”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 24:5 (1969), 30–36 | MR | Zbl

[42] I. C. Gohberg, E. I. Sigal, “An operator generalization of the logarithmic residue theorem and the theorem of Rouché”, Math. USSR-Sb., 13:4 (1971), 603–625 | DOI | MR | Zbl

[43] B. R. Vajnberg, Asymptotic methods in equations of mathematical physics, Gordon and Breach, New York, 1989 | MR | MR | Zbl | Zbl

[44] T. Kato, Perturbation theory for linear operators, Grundlehren Math. Wiss., 132, Springer-Verlag, Berlin–Heidelberg–New York, 1966 | MR | MR | Zbl | Zbl

[45] M. Reed and B. Simon, Methods of modern mathematical physics. Vol. 4. Analysis of operators, Acad. Press, New York–San Francisco–London, 1978 | MR | MR | Zbl | Zbl

[46] V. S. Vladimirov, Equations of mathematical physics, Dekker, New York, 1971 | MR | MR | Zbl | Zbl

[47] A. N. Kolmogorov, S. V. Fomin, Introductory real analysis, Dover, New York, 1975 | MR | MR | Zbl | Zbl

[48] A. V. Bitsadze, Osnovy teorii analiticheskikh funktsii kompleksnogo peremennogo, Nauka, M., 1984 | MR | Zbl

[49] T. A. Mel'nik, S. A. Nazarov, “The asymptotics of the solution to the Neumann spectral problem in a domain of the “dense-comb” type”, J. Math. Sci. (New York), 85:6 (1997), 2326–2346 | DOI | MR | Zbl

[50] G. P. Panasenko, “Asymptotic behavior of the eigenvalues of elliptic equations with strongly varying coefficients”, J. Soviet Math., 47:4 (1989), 2638–2651 | MR | Zbl | Zbl

[51] J.-L. Lions, Perturbations singulières dans les problèmes aux limites et en contrôle optimal, Lecture Notes in Math., 323, Springer-Verlag, Berlin, 1973 | MR | Zbl

[52] M. Reed, B. Simon, Methods of modern mathematical physics. Vol. 1. Functional analysis, Acad. Press, New York–London, 1972 | MR | MR | Zbl

[53] R. Hempel, K. Lienau, “Spectral properties of periodic media in the large coupling limit”, Comm. Partial Differential Equations, 25:7–8 (2000), 1445–1470 | DOI | MR | Zbl

[54] G. V. Sandrakov, “Homogenization of non-stationary Stokes equations with viscosity in a perforated domain”, Izv. Math., 61:1 (1997), 113–141 | DOI | MR | Zbl